On the Evolution of Complexity

W. Brian Arthur

SFI WORKING PAPER: 1993-11-070

SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent the
views of the Santa Fe Institute. We accept papers intended for publication in peer-reviewed journals or
proceedings volumes, but not papers that have already appeared in print. Except for papers by our external
faculty, papers must be based on work done at SFI, inspired by an invited visit to or collaboration at SFI, or
funded by an SFI grant.

©NOTICE: This working paper is included by permission of the contributing author(s) as a means to ensure
timely distribution of the scholarly and technical work on a non-commercial basis. Copyright and all rights
therein are maintained by the author(s). It is understood that all persons copying this information will
adhere to the terms and constraints invoked by each author's copyright. These works may be reposted only
with the explicit permission of the copyright holder.

www.santafe.edu

SANTA FE INSTITUTE

ON THE EVOLUTION OF COMPLEXITY

W. Brian Arthur § °

Stanford University

April 11, 1993,

¥ Morrison Professor of Population Studies and Economics, Stanford University,
Stanford, CA 94305-6084.

On the Evolution of Complexity

W. Brian Arthur

Abstract

It is often taken for granted that as systems evolve over time they tend to become more
complex. But little is understood about the mechanisms that might cause evolution to
favor increases in complexity over time. This paper proposés three means by which

~complexity tends to grow as systems evolve. In co-evolutionary systems it may grow by -
increases in “species” diversity: under certain circumstances new species may provide
further niches that call forth further new species in a steady upward spiral. In single
systems it may grow by increases in structural sophistication: the system steadily
cumulates increasing numbers of subsystems or sub-functions or sub-parts to break
through performance limitations, or enhance its range of operation, or handle exceptional
circumstances. Or, it may suddenly increase by “capturing software”: the system
captures simpler elements and learns to “program” these as “software” to be used to its
own ends. Growth in complexity in all three mechanisms is intermittent and epochal. And
in the first two is reversible, so that collapses in complexity may occur randomly from
time to time.

Mlustrative examples are drawn from not just from biology, but from economics,
adaptive computation, artificial life, and evolutionary game theory.

Acknowlegements

This paper was originally presented at the Santa Fe Institute’s Integrative Themes
Workshop in July 1992. I thank Dan McShea, Brian Goodwin, and the workshop

participants for useful comments. I am grateful to' Harold-Morowitz in-particular for

several conversations on the themes of this essay.

ON THE EVOLUTION OF COMPLEXITY

W. BRIAN ARTHUR

- It is a commonly accepted belief—a folk theorem, almost—that as systems evolve
over time they tend to become more complex. But what is the evidence for this? Does
evolution in fact favor increases in complexity, and if so why? By what mechanisms
might evolution increase complexity over time? And can the process go in the other
direction too, so that complexity diminishes from time to time? In this paper I will
discuss these questions, and in particular, three different ways in which evolution tends to
increase complexity in general systems.

In the biological literature, there has been considerable debate on the connection
between evolution and complexity (see McShea [1], and Bonner [2]). But much of this
discussion has been hampered by the fact that evolutionary innovations typically come in
the form of smooth changes or continuous, plastic modifications: in size of organism [2],
in morphology of body parts [3], or in animal behavior [2], so that increases in
“complexity” are difficult both to define and discern. As a result, while most biologists
believe that complexity does indeed increase with evolution, and particular mechanisms
are often cited, the question remains muddied by problems of definition and observation,

so that some-biologists have: expressed ‘doubts-about ‘any-linkage between evolution and "

complexity at all (see [1]).

L

+‘Fortunately; -of latevwe -are -beginning to cumulate-experience -in evolutionary
contexts that are not necessarily biological. These contexts include those of competition -

among technologies and firms in the economy, of self-replicating computer programs, of -

adaptive computation, of artificial-life systems, and of computer-based “ecologies” of
competing game-strategies. Used as alternatives to biological examples, these have two
advantages. Their alterations and innovations are very often discrete and well-marked, so
that in these contexts we can define and observe increases in complexity more easily.
And many are computer based. Thus they can provide “laboratories” for the real-time
measurement and replication of changes in complexity in the course of evolution.

In discussing complexity and evolution in this essay, I will draw examples from the
economy and from several of the other contexts mentioned above, as well as from
biology. I will be interested in “complexity” seen simply as complication. Exactly what
“complication” means will vary from context to context; but it will become clear, I hope,
in the mechanisms as they are discussed. And I will use the term “evolution” often in its
phylogenetic sense, as development in a system with a clear lineage of inherited
structures that may change over time, Thus we can talk about the evolution of a language
say, or of a technology, without having to assume that these necessarily reproduce in a
population of languages or technologies.

Growth in Coevolutionary Diversity

The first mechanism whereby complexity increases as evolution takes place, I will
call growth in coevolutionary diversity. It applies in systems where the individuals or
entities or species or organisms co-exist together in an interacting population, with some
forming substrates or niches that allow the existence of others. We may therefore think of
such co-evolving systems as organized into loose hierarchies or “food webs” of
dependence, with individuals further down a hierarchy depending for their existence on
the existence of more fundamental ones nearer the base of the hierarchy. - i

When the individuals (and their multiple possibilities in interaction) in such systems
create a variety of niches that are not closed off to further newly generated individuals,

- .diversity -tends: to -grow.-in- a-self-reinforcing-way. -New: individuals -that -enter-the

population may provide new substrates, new niches. This provides new possibilities to be

-« filled or exploited by further new entities. The appearance of these in turn may provide

- further.new giches_.andhsubstrates.-r{And so on. By this means,.complexity in the.form of
greater diversity and a more intricate web of interactions, tends to bootstrap itself upward
over time. Growth in coevolutionary diversity may be slow and halting at first, as when

- the new individuals merely replace uncompetitive, pre-existing ones. But over time, with
entities providing niches and niches making possible new entities, it may feed upon itself;
so that diversity itself provides the fuel for further diversity.

Growth in coevolutionary diversity can be seen in the economy in the way
specialized products and processes within the computer industry have proliferated in the
last two decades. As modern microprocessors came into existence, they created niches for
devices such as memory systems, screen monitors, and bus interfaces that could be
connected with them to form useful hardware—computing devices. These in turn created
a need or niche for new operating system software and programming languages, and for
software applications. The existence of such hardware and software in turn made possible
desktop publishing, computer-aided design and manufacturing, electronic mail, shared
computer networks, and so on. This created niches for laser printers, engineering-design
software and hardware, network servers, modems, and transmission systems. These new
devices in its turn called forth further new microprocessors and system software to drive
them. And so, in about two decades, the computer industry has undergone an explosive
increase in diversity: from a small number of devices and software to a very large
number, as new devices make possible further new devices, and new software products
make possible new functions for computers, and these in turn call forth further new
devices and new software.

Of course, we should not forget that as new computer products and functions for
.. computers. appear,.they. are often replacing something else in the economy. Computer-
aided design may eventually replace standard drawing-board-and-T-square design. And
so the increase in diversity in one part of a system may be partially offset by loss of
diversity elsewhere. Occasionally, in a coevolving system, this replacement of an
existing function can cause a reversal in the growth of coevolutionary diversity. This
happens when the new entity replaces a more fundamental one in-the system and the -
niches dependent on this disappear. In the economy of the last century, for example, there
was a steady increase in the numbers of specialized, interconnected "niche firms" in the
horse-drawn transportation industry; so that by the end of the century very many different
types of coach builders, harness makers, smithyshops, and horse breeders.co-existed.- The
appearance of the automobile cansed all this to collapse, to be replaced in turn by a slow

~i--growing network of interconnected -niche -manufacturers dependent on gasoline

atatechnology, oil.exploration-and-refining; and.the internal-combustion:engine.»Thus
complexity—diversity in this case—may indeed tend to grow-in co-evolving systems, but
it may also fluctuate greatly over time.

Growth in diversity can be observed in several artificial-evolution contexts: for
example, Tom Ray's Tierra system [4], John Holland's Echo system [5], and Stuart
Kauffman's various chemical evolution systems [6]. To take the Tierra example, Ray sets
up an artificial world in which computer programs compete for processor time and
memory space in a virtual computer. He begins with a single “organism” in the form of a
set of self-replicating machine language instructions that can occasionally mutate. This
forms a niche or substrate for the appearance of parasitic organisms that use part of its
code to replicate—that “feed” on its instructions. Further organisms appear that are
immune to the parasites. The parasites in turn form a substrate for hyper-parasites that

; feed on them. Hyper-hyper parasites appear. And so on. New “organisms” continually
appear and disappear, in a rich ecosystem of symbiotic and competing machine-language
programs that shows a continual net growth of diversity. In several days of running this
system, Ray found no end-point to the growth of diversity. Starting from a single
genotype, over 29,000 different self-replicating genotypes in 300 size classes (equivalent
to species in this system) accumulated in this coevolving computer ecology.

At this point I want to note several things that apply to this mechanism.

First, the appearance of new entities may in some cases depend not so much on the
existence of previous entities as on their possibilities in interaction. For example, in the
economy, a new technology such as the computer laser printer mentioned above is
possible only if lasers, xerography, and computers are previously available as

© technologies. In these cases, symbiotic clusters of entities—sets of entities whose
collective activity or existence is important—may form many of the niches. We could
predict that where collective existence is important in forming niches, growth in
coevolutionary diversity would be slow at first—with few entities there would be few
possibilities in combination and hence few niches. But as more single entities enter, we
would see a very rapid increase in niche possibilities, as the number of possible niche-
clusters that can be created undergoes a combinatorial explosion.

Second, collapses will be large if replacement by a new entity happens near the base

of the dependency hierarchy; small if.near the endpoints.. Therefore-the way in-which .- -. -

expansion and collapse of diversity actually work themselves out in a coevolutionary

.. system is conditioned heavily on the way dependencies are structured.

-#:xThird, two positive -feedbacks—circular causalities==are' inherent* in ' this
mechanism. The generation of new entities may enhance the generation of new entities,
simply because there is new “genetic material” in the system available for further
“adaptive radiation.” And the appearance of new entities provides niches for the
appearance of further, new entities. In turn, these mean that where few new entities are
being created, few new entities can appear; thus few new entities and niches will be
created. And so the system will be largely quiescent. And where new entities are
appearing rapidly, there will be a rapid increase in new entities and niches, causing
further generation of entities and further new niches. The system may then undergo a
“Cambrian explosion.” Hence we would expect that such systems might lie dormant in
long periods of relative quiescence but burst occasionally into periods of rapid increase in
complexity. That is, we would expect them to experience punctuated equilibria.

This mechanism whereby complexity increases via the generation of new niches is
familiar to most of us who study complex systems. Certainly Stuart Kauffman has written
extensively on various examples of self-reinforcing diversity. Yet strangely it is hard to
find discussion of it in the traditional biological literature. Bonner’s 1988 book, The
Evolution of Complexity, does not mention it, for example, although it devotes a chapter
to a discussion of complexity as diversity. Waddington [7] comes somewhat closer when

" he suggests that niches become more complex as organismal diversity increases. The
more cdmplex niches, he suggests, are then filled by more complex organisms, which in
turn increases niche complexity, But he seems to have in mind an upward spiral of
internal structural complexity, and not of ecological diversity. An intriguing mention of
this mechanism—or something tantalizingly close to it—comes from Darwin’s notebooks
(p. 422) [81 1:

“The enormous number of animals in the world depends, of their
varied structure and complexity ... hence as the forms became
complicated, they opened fresh means of adding to their
complexity.”

But once again this could be read as having to do with internal structural complexity,
- rather than ecological diversity.

1. I'am grateful to Dan McShea for pointing out this quotation to me.

Wl

Structural Deepening

== s <Acsecond mechanism causing complexity to increaserover time'T-will call structural

deepening. This applies to single entities—systems, organisms, species, individuals—that
evolve against a background that can be regarded as their “environment.” Normally
competition exerts strong pressure for such systems to operate at their limits of
performance. But they can break out of these limits by adding functions or sub-systems
that allow them to (a) operate in a wider or more extreme range, (b) sense and react to
exceptional circumstances, (c) service other systems so that they operate better, (d)
enhance their reliability. In doing so, they add to their “structural depth” or design
sophistication. Of course, such functions or sub-systems, once added, may operate at
their limits of performance. Once again they can break through these limits by adding
sub-sub-systems according to (a)—(d) above. By this process, over time the original
system becomes encrusted with deeper functions and subfunctions. It may improve
greatly in its performance and in the range of environment it can operate in. But in doing
$0, it becomes increasingly complex.

The history of the evolution of technology provides many examples of structural

- deepening, The original gas-turbine (or jet) aero engine, designed independently by Frank.

Whittle and Hans von Ohain in the 1930’s, for example, was simple [9]. It compressed
intake air, ignited fuel in it, released the exploding mixture through a turbine that drove

- the compressor, then exhausted the air mass at high velocity to provide thrust. Whittle’s

original prototype had one moving part, the compressor-turbine combination. But over
the years, competitive pressures felt by commercial and military interests led to constant
demands for improvement. This forced designers to overcome limits imposed by extreme
stresses and temperatures, and to handle exceptional situations, sometimes by using better
materials, but more often by adding subsystems.

And so, over time, higher air-compression ratios were achieved by using not one,
but an assembly—a system—of many compressors. Efficiency was enhanced by a
variable position guide-vane control system that admitted more air at high altitudes and
velocities and lowered the possibility of the engine stalling. A bleed-valve control system
was added to permit air to be bled from critical points in the compressor when pressures
reached’certain levels. This also reduced the tendency of the engine to stall. A secondary
air-flow system was added to cool the red-hot turbine blades and pressurize sump cavities
to prevent lubrication leakage. Turbine blades were also cooled by a system that circulat-

ed airinside ‘them. To provide additional thrust in-military -air-combat conditions; af-"~

terburner assemblies were added. To handle the possibilities of engine fires, sophisticated

- fire-detection systems were added. To prevent the build-up of ice in the intake region, de-
- +icing. assemblies were. added. Specialized fuel systems, lubrication systems, ‘vanable-
“exhaust-nozzle systems, engine-starting systems were added.

But all these required further subsystems, to monitor and control them and enhance

~ their performance when #key ran into limitations. These subsystems in turn required sub-

sub-systems to enhance their performance. A modern, aero gas turbine engine is 30 to 50

times more powerful than Whittle’s and a great deal more sophisticated. But Whittle’s

original simple system is now encrusted with subsystem upon subsystem in an

enormously complicated array of interconnected modules and parts. Modern jet engines
have upwards of 22,000 parts.2

And so, in this mechanism, the steady pressure of competition causes complexity to

increase as functions and modifications are added to a system to break through

-+ limitations, to handle exceptional circumstances, or to adapt to an environment itself

more complex. It should be evident to the reader after a little thought that this increase of

structural sophistication applies not just to technologies, but also to biological organisms,

legal systems, tax codes, scientific theories, and even to successive releases of software
programs.

One laboratory for observing real-time structural deepening is John Holland’s
genetic algorithm [10]. In the course of searching through a space of feasible candidate
“solutions” using the genetic algorithm, a rough ballpark solution-—in Holland’s jargon, a
coarse schema—appears at first. This may perform only somewhat better than its rivals.
But as the search continues, superior solutions begin to appear. These have deeper
structures (finer subschemas) that allow them to refine the original solution, handle
exceptional situations, or overcome some, limitation of the original solution. The eventual

- solution-formulation (or schemata combination) arrived at may be structurally “deep” and
complicated. Reversals in structural depth can be observed in the progress of solutions
provided by the genetic algorithm. This happens when a coarse schema that has
dominated for some time and has been considerably elaborated upon is replaced by a
newly “discovered,” improved coarse schema. The hierarchy of subschemas dependent
on the original coarse schema then collapses. The search for good solutions now begins to
concentrate upon the new schema, which in its turn begins to be elaborated upon. This -

- may happen several times in the course of the algorithmic search.

John Koza’s genetic programming algorithm, in which algebraic expressions evolve

2. Personal communication from Michael Bailey, General Electric Aircraft Engines. -

e e e)

- s s diwith the purpose of solving a given mathematical problem, provides a similar laboratory
i [14]. In-Koza’s-setup,.we typically.see the algorithmic. parse trees:that describe the

expressions grow more and more branches as increasing “depth” becomes built in to the
currently best-performing algebraic expression.

180
160 | Structural
140
120
100
80 -
60 -
40 -

20 -

0 10 20 30 40 50
Generation

Figure 1. Structural depth (number of parts in parse tree) of the currently best expression plotted
against number of generations -of search in the problem of finding a Fourier series expression to

*- match.a given function (from Koza [11] p.502).

Figure 1 shows the growth of structure as the search for good “solutions™ progresses
in of one of Koza’s examples. As we can see, once again this mechanism is not
unidirectional. Reversals in structural depth and sophistication occur when new symbolic
expressions come along: that allow the replacement of ones near the "root base" of the
original system. On the whole, depth increases, but with intermittent reversals into
relatively simpler structures along the way. '

Collapse-near- the .base .of a system.can be seen in a: very different context, the

- yehistory of science, when new theories suddenly-replace old, elaborate ones. An example
is the collapse of Ptolemaic.astronomy caused by the Kepler-Newton.version.of the
Copernican theory. This novel system, that explained planetary orbits using only a few
simple laws, struck at the root base of the hugely complicated Ptolemaic system; and it
had such superior explanatory power that the Ptolemaic system never recovered.
Similarly, Whittle’s jet-engine, with its extraordinarily simple propulsion principle,
largely replaced the piston aero-engine of the 1930s, which had become incurably
complicated in attempts to overcome the limitations in operating internal combustion
engines at high speed in the very thin air of higher altitudes [12]. And so in evolving
systems, bursts of simplicity often cut through growing complexity and establish a new
basis upon which complication can again grow. In this back and forth dance between
complexity and simplicity, complication usually gains a net edge over time.

So far I have described two apparently separate mechanisms. In the first, ecosys-
tems-—collections of many individuals—become more complex, more diverse, in the
course of evolution; in the second, individuals within ecosystems become more complex,
structurally deeper, in the course of evolution. In many systems, of course, these mecha-
nisms operate simultaneously, and they may interact, alternate, and even compete.

This can be seen clearly in Kristian Lindgren's study of strategies that evolve in a
game-theoretic setting [13]. Lindgren sets up a computerized model populated by
strategies that-meet randomly and cumulate profit by playing, one-on-one, a finite version
of the iterated prisoners’ dilemma. The competing strategies are described as coded bit-

. strings, where the bits represent memory of previous plays that the strategies can take
account of. The strategies can occasionally mutate. Successful ones proliferate in this

coevolutionary- environment; unsuccessful ones die out. In Lindgren’s world, it can - -

.clearly be seen that the diversity of strategies increases as new coevolving strategies
provide niches that can be exploited by fresh, new strategies, exactly as in the first
mechanism I have discussed. But the strategies themselves also become increasing
“deep”—their code string or memory lengthens—as competition rewards increasingly
subtle strategies, as in the second mechanism. In fact, the two mechanisms interact in that
the arrival of a new, successful, deeper strategy eliminates many of the previous, simpler
strategies. Diversity collapses, and with it takes away many of the niches it provides.
There follows a phase in which the newer, deeper strategies mutate and proliferate, so

- that diversity increases again. And so new-depth can-both destroy:old diversity and feed a -

new round of increase: in diversity ‘among newer;-deeper strategies. In'this way, the
growth of coevolutionary diversity alternates in a sporadic way with the growth of -

o 4

10

e oewiostructural depth in the strategies.This-process-has obvious parallels in the history of

. .. biological evolution. Some biologists suggest, for example, that-increased “depth”.in the

.-, form of the appearance of: multicellular, eukaryotic. organisms fueled the Cambrian
explosion of diversity 600 million years ago (Stanley [15]).

Capturing Software

The third mechanism in the growth of complexity that I will propose is completely
different from the first two. Actually it has more to do with the rapid emergence of
complexity than with any slow growth. It is a phenomenon I will call capturing software.
This is the taking-over and “tasking” of simpler elements by an outside system for its

¢ - own (usually<informational) purposes. Typically the outside system “discovers” the
simpler elements, and finds it can use them for some elementary purposes. The elements
turn out to have a set of rules that govern how they may be combined and used—an
“interactive grammar,” This grammar typically allows many combinations of the simple
elements; and as the outside system begins to learn this grammar, it also learns to take
advantage of the elements in combination. At full fruition, the outside system learns to -
use this interactive grammar to "program" the simple elements and use them in
complicated combinations for its own multi-purpose ends.

This mechanism may sound somewhat strange and unfamiliar; so let me clarify it
by some examples. A very simple one would be electronics, taken as a technology. As
humans, we have learned over the last couple of centuries to “task” electrons to carry out

~such activities as transmitting sound and vision, controlling sophisticated machinery, and
. .- computing. Originally, in the days of Faraday and Franklin, the workings of electrons and
of static electricity were poorly understood. And so, uses were few, But in the last century
and in the early decades of this one, we began to learn the “grammar” of electricity—the
set of operational rules involving induction, capacitance, and impedance that govern the
movements of electrons and amplification of their flow. And so we slowly learned to
“capture” and “program” electrons for our own use. In this case the simple elements
referred to above are electrons. The outside system is ourselves, the human users. The
. grammar is the laws of electromagnetism, And the programmable outputs are the various
technical uses to which electronics-are: put. At~the output-level, there-is-sswift -
“adaptation.” The various technological. purposes- in which we use “electrons -as a-
- “programmable software” shift and expand rapidly. But at the grammar and carrier level, -

11

.y« in1 this case, adaptation is absent. The behavior of-electricity and of electrons are fixed by
= physical laws:that are,.within the human time frame at least, immutable. - ..

Sometimes with capturing software, the interactive grammar is not laid down
unalterably, but can itself change and evolve in the process of “capturing” the software.
An example is the way in which human language evolved. Early humans learned perhaps
several hundred thousand years ago that crude, emitted sounds could be used for
communicating warnings, pleasure, simple needs. Very slowly, and comparatively
recently on an evolutionary time-scale, they began to generate some elementary rules—a
grammar—to organize these into simple concatenated expressions. Eventually, over
many thousands of years, these sounds or phonemes plus grammar evolved into a
complex interactive system—a language. This could be “programmed” to form
statements, queries, and commands that conveyed a high degree of nuance and subtlety.

In this example, the simple, carrier elements are the sounds or phonemes of human
speech. The outside system is the human community that “captures” and makes them into
a software, a language. And the grammar is the syntactical system that develops to ensure
consistency and commonality of meaning. Of course, there is no single, natural
syntactical grammar for human language. A grammar must emerge by the slow evolution
of a social convention, with constraints exercised by the need for linguistic efficiency and
consistency and by the way linguistic activities are organized in the human brain [14].
(Of course, both the human vocal anatomy and brain also changed as a response to the
evolution of language.) The overall language that results from this evolutionary process is
a programmable software whose potential output we may think of as the set of all

-meaningful sentences or statements the language can express.

Adaptation in this case can occur at all levels. At the program output level,

- wr-vx adaptation:is instantaneous. We can think of a sentence uttered as a one-off, extremely
rapid, adaptation of software output to the purpose of what the sentence is intended to
communicate. At the grammar level, adaptation implies change in the language itself,

This commonly takes the form of drift, and it happens slowly and continuously. This is
because any abrupt alteration or large deviation in grammar would invalidate current
“output programs.” At the phoneme or simple element level, adaptation—or change and
drift—is slowest of all. Slight changes at this carrier level, if not subtle and continuous,

might upset all that is expressed in.the system. Slow drift may occur, as when vowels - -

- shift over the:course of a generation or two; but thereis a powerful mechanism' actmg to
- keep the carrier elements locked-in to a constant way of behaving.- - -

12

o7 wA particularlytelling - example -of capturing software is the way in which

-+ sophisticated-derivatives have. arisen and-are used in recent years-in.financial.markets. In
this case the outside system is the financial community. It begins by the simple trading of
something of value—soybeans, securities, foreign currencies, municipal bonds, Third
World debt, packages of mortgages, Eurodollars—anything to which title can be held.
Such items may fluctuate in value and can be swapped and traded. They are called
underlyings in financial jargon, and they form the simple, carrier elements of the system I
want to consider now.

In early days of such markets, typically an underlying is simply held and traded for
its intrinsic value. But over time, a grammar forms. Traders find they can: (a) usefully
arrange options associated with contingent events that affect the underlying; (b) put
several underlyings together to create an associated index, as with a stock index; (c) issue
Jutures contracts to deliver or obtain an underlying at some time, say 60 days or one year,
in the future; (d) issue securities backed by-the underlying. But notice that such
“derivatives” as contingent-event options, indices, futures, and securities are themselves
elements of value. Thus they too can become underlyings, with their own traded values.
Once again the market could apply (a), (b), (c), or (d) to these new underlyings. We may
then have options on securities, index-futures, options on futures, securities indices, and
s0 on; with trades and swaps of all these.

. With such a grammar in place, derivatives. experts “program” these elements into a
package that provides a desired combination of financing, cash-flow and risk exposure
for clients with highly particular, sophisticated financial needs. Of course, financial
markets did not invent such programming all at once. It evolved in several markets semi-
independently, as a carrier element was used, simply at first, and then in conjunction with
the natural grammar of finance.

From the examples I have given, it may seem that the system that uses and captures
simple elements to its own uses is always a human one. But of course, this is not the case.
Let me point out two examples in the biological sphere. One is the formation of neural
systems. As certain organisms evolved, they began to “task” specialized cells for the
simple purposes of sensing and modulating reactions to outside stimuli. These specialized
cells in turn developed their own interactive grammar; and the overall organism used this

i~ to “program” this interconnected neural system to-its own purposes. Similarly, the

-+ -ancestors of the-cells found in the immune systems of higher organisms were-used
- originally for. simple: purposes.. ©ver - time, “these- too -developed useful ~rules of - -

interaction~—an interactive grammar—thereby eventually becoming a highly

13

siedese i programmable system that could protect against outside antigens.

= restiBiological life itself can be-thought of in this way. Here the situation-is much more

- complicated than in the previous examples. Biological organisms are built from -
modules—cells mainly—that in turn are built from relatively small and few-(about 50 or
s0), fairly simple molecules (Morowitz [16]). These molecules are universal across
virtually all terrestrial life and are the carriers of biological construction. They are
combined into appropriate structures using a grammar consisting of a relatively small
number of metabolic chemical pathways. This metabolic grammar in turn is modulated or
programmed by enzymes. The enzymes doing the programming of course have no
conscious purpose. In fact they themselves are the carriers in a second programmed
system. They are governed by a complicated gene-expression “grammar,” which switches
on or inhibits their production from the genes or DNA that code for them, according to
feedback received from the state of the organism they exist in. And so we have one

. captured software system, the programming of the simple metabolic pathways via
proteins or enzymes to form and maintain biological structures, modulated by another
captured software system, the programming of proteins or enzymes via nucleic acids and
the current state of the organism.

In this case the entire system is closed—there is no outside system programming the
biological one to its own purposes. In the short term each organism programs itself
-according to its current development and current needs. In the long term the overall
system-—the resulting biospheric pattern of organisms that survive, interact, and co-
evolve—together with environmental and climatic influences, becomes the programmer,
laying down its code in the form of the collection of gene sequences that survive and exist
at any time. Of course, without an outside system, we can not say these programmable

- systems were. ever “captured.” Instead they emerged and bootstrapped themselves,
developing carriers, grammar, and software as they went. Viewed this way, the origin of
life is very much the emergence of a software system carried by a physical system—the
emergence of a programmable system learning to programming itself.

Capturing software in all the cases discussed here is an enormously successful
evolutionary strategy. It allows the system to adapt extremely rapidly by merely
reprogramming the captured system to form a different output. But because changes in

- grammars and-in carriers would upset existing “programs,” we would expect them to be -
- locked in-and to change slowly if at all. This explains why a"genetic sequence can change
- eagily, but the genetic code can not; why new organisms:can :appear, but-the icell:ands .. 2
metabolic chemistry remain relatively fixed; why new financial derivatives are constantly

14

- «+=--geen, but the securities-and-exchange rules stay relatively constant.3

Conclusion

In this paper, I have suggested three ways in which complexity tends to grow as evolution
takes place. It may grow by increases in diversity that are self-reinforcing; or by increases
in structural sophistication that break through performance limitations; or, by systems
“capturing” simpler elements and learning to “program” these as “software” to be used to
their own ends. Of course, we would not expect such growth in complexity to be steady.
On the contrary, in all three mechanisms we would predict it to be intermittent and
epochal. And we would not expect it to be unidirectional. The first two mechanisms are

.. certainly reversible, so we would expect collapses in complexity to occur randomly from
time to time. ‘

As we study evolution more deeply, we find that biology provides by no means all
of the examples of interest. Any system with a lineage of inherited, alterable structures
pressured to improve their performance shows evolutionary phenomena. And so, it is
likely that increasingly we will find connections between complexity and evolution by
drawing examples not just from biology, but from the domains of economics, adaptive
computation, artificial life, and game theory. Interestingly, the mechanisms described in
this paper apply to examples in all these evolutionary settings.

3 Carriers do change of course if they can be-substituted for one -another easily. For example, * - -

.options can be built on any underlying; and so in this case carriers can and do change rapidly. But
the essential property of underlyings—that- of being.an-object-that carries.uncertain -value—
remains necessary in all cases and does not change.

15

References

1. McShea, Daniel. “Complexity and Evolution: What everybody Knows,” Biology and
Philosophy, 6,303-324, 1991,

2. Bonner, John T. The Evolution of Complexity, Princeton Univ. Press, 1988.

3. Miiller, Gerd B. “Developmental Mechanisms at the Origin of Morphological Novelty:
a Side-Effect Hypothesis,” in Evolutionary Innovations, Matthew Nitecki (editor),
Univ. Chicago Press. 1990.

4. Ray, Thomas S. “Evolution and Optimization of Digital Organisms.” In K. Billingsly
et al. (editors), Scientific Excellence in Supercomputing, Baldwin, 1991,

5. Holland, John. “Echoing Emergence: Objectives, Rough Definitions, and Speculation
for Echo-class Models,” mimeo, University of Michigan, 1993.

6. Kauffman, Stuart. “The Sciences of Complexity and Origins of Order,” Santa Fe Paper
91-04-021, 1991.

7. Waddington, C H. “Paradigm for an Evolutionary Process,” pp. 106—128 in Towards a
Theoretical Biology, Vol 2, C.,H. Waddington (editor), Aldine, 1969.

8. Darwin Charles, from Charles Darwin’s Notebooks, (p. 422), P.H. Barrett et al.
(editors), Cornell U. Press, 1937.

9. Constant, Edward W. Origins of the Turbojet Revolution, Johns Hopkins Univ. Press,
1980.

10. Holland, John. Adaptation in Natural and Artificial Systems, 2nd edition, MIT Press,
1992,

11. Koza, John. Genetic Programming, MIT Press, 1992.

v vl 20 Herony S.D.-History of the Aircraft Piston Engine, Ethyl Corp. Detroit, 1961.

13. Lindgren, Kristian. “Evolutionary Phenomena in Simple Dynamics,” In Artificial Life
1I, C. Langton (editor), Addison-Wesley, Reading, MA, 1991,

14. Lieberman, Philip. The Biology and Evolution of Human Language, Harvard
University Press, 1984,

15. Stanley, S.M. “An Ecological Theory for the Sudden Origin of Multicellular Life in
the late Precambrian,” Proc. Nat. Acad. Sci. 70, 1486—1489, 1979,

16. Morowitz, H. Beginnings of Cellular Life, Yale University Press, 1992.

