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Abstract

Experience curves are widely used to predict the cost benefits of increasing the scale of deployment
of a technology. But how good are such forecasts? Can one predict their accuracy a priori? In
this paper we answer these questions by developing a method to make distributional forecasts for
experience curves. We test our method using a dataset with proxies for cost and experience for 46
products and technologies and show that it works reasonably well. The framework that we develop
helps clarify why the experience curve method often gives similar results to simply assuming that costs
decrease exponentially. To illustrate our method we make a distributional forecast for prices of solar
photovoltaic modules.

JEL: C53, O30, Q47.
Keywords: Forecasting, Technological progress, Experience curves.
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1 Introduction

Since Wright’s (1936) study of airplanes, it has
been observed that for many products and tech-
nologies the unit cost of production tends to de-
crease by a constant factor every time cumula-
tive production doubles (Thompson 2012). This
relationship, also called the experience or learn-
ing curve, has been studied in many domains.1
It is often argued that it can be useful for fore-
casting and planning the deployment of a partic-
ular technology (Ayres 1969, Sahal 1979, Martino
1993). However in practice experience curves are
typically used to make point forecasts, neglecting
prediction uncertainty. Our central result in this
paper is a method for making distributional fore-
casts, that explicitly take prediction uncertainty
into account. We use historical data to test this
and demonstrate that the method works reason-
ably well.

Forecasts with experience curves are usually
made by regressing historical costs on cumula-
tive production. In this paper we recast the ex-
perience curve as a time series model expressed
in first-differences: the change in costs is deter-
mined by the change in experience. We derive a
formula for how the accuracy of prediction varies
as a function of the time horizon for the forecast,
the number of data points the forecast is based
on, and the volatility of the time series. We are
thus able to make distributional rather than point
forecasts. Our approach builds on earlier work by
Farmer & Lafond (2016) that showed how to do
this for univariate forecasting based on a gener-
alization of Moore’s law (the autocorrelated geo-
metric random walk with drift). Here we apply

∗Acknowledgements: This project was supported
by the European Commission projects FP7-ICT-2013-
611272 (GROWTHCOM) and H2020-730427 (COP21
RIPPLES), Partners for a New Economy, and the In-
stitute for New Economic Thinking. Contact: fran-
cois.lafond@inet.ox.ac.uk, doyne.farmer@inet.ox.ac.uk

1 See Yelle (1979), Dutton & Thomas (1984), Anzanello
& Fogliatto (2011) and for energy technologies Neij (1997),
Isoard & Soria (2001), Nemet (2006), Kahouli-Brahmi
(2009), Junginger et al. (2010), Candelise et al. (2013).

our new method based on experience curves to
solar photovoltaics modules (PV) and compare to
the univariate model.

Other than Farmer & Lafond (2016), the two
closest papers to our contribution here are Al-
berth (2008) and Nagy et al. (2013). Both pa-
pers tested the forecast accuracy of the experience
curve model, and performed comparisons with the
time trend model. Alberth (2008) performed fore-
cast evaluation by keeping some of the available
data for comparing forecasts with actual realized
values.2 Here, we build on the methodology de-
veloped by Nagy et al. (2013) and Farmer & La-
fond (2016), which consists in performing system-
atic hindcasting. That is, we use an estimation
window of a constant (small) size and perform as
many forecasts as possible. As in Alberth (2008)
and Nagy et al. (2013), we use several datasets
and we pool forecast errors to construct a distri-
bution of forecast errors. We think that out-of-
sample forecasts are indeed good tests for mod-
els that aim at predicting technological progress.
However, when a forecast error is observed, it is
generally not clear whether it is “large” or “small”,
from a statistical point of view. And it is not clear
that it makes sense to aggregate forecast errors
from technologies that are more or less volatile
and have high or low learning rates.

A distinctive feature of our work is that we ac-
tually calculate the expected forecast errors. As
in Farmer & Lafond (2016), we derive an approx-
imate formula for the theoretical variance of the
forecast errors, so that forecast errors from dif-
ferent technologies can be normalized, and thus
aggregated in a theoretically grounded way. As a
result, we can check whether our empirical fore-
cast errors are in line with the model. We show
how in our model forecast errors depend on future
random shocks, but also parameter uncertainty,
as is only seldomly acknowledged in the litera-
ture (for exceptions, see Vigil & Sarper (1994)

2 Alberth (2008) produced forecasts for a number (1,2,
. . . 6) of doublings of cumulative production. Here instead
we use time series methods so it is more natural to compute
everything in terms of calendar forecast horizon.
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and Van Sark (2008)).
Alberth (2008) and Nagy et al. (2013) com-

pared the experience curve forecasts with a sim-
ple univariate time series model of exponential
progress. While Alberth (2008) found that the ex-
perience curve model was vastly superior to an ex-
ogenous time trend, our results (and method and
dataset) are closer to the findings of Nagy et al.
(2013): univariate and experience curves models
tend to perform similarly, due to the fact that
for many products cumulative experience grows
exponentially. When this is the case, we cannot
expect experience curves to perform much better
than an exogenous time trend unless cumulative
experience is very volatile, as we explain in detail
here.

Finally, we depart from Alberth (2008), Nagy
et al. (2013) and most of the literature by using
a different statistical model. As we explain in the
next section, we have chosen to estimate a model
in which the variables are first-differenced, instead
of kept in levels as is usually done. From a the-
oretical point of view, we believe that it is rea-
sonable to think that the stationary relationship
is between the increase of experience and tech-
nological progress, instead of between a level of
experience and a level of technology. In addition,
we will also introduce a moving average noise, as
in Farmer & Lafond (2016). This is meant to cap-
ture some of the complex autocorrelation patterns
present in the data in a parsimonious way, and
increase theoretical forecast errors so that they
match the empirical forecast errors.

Our focus is on understanding the forecast er-
rors from a simple experience curve model3. The
experience curve, like any model, is only an ap-
proximation. Its simplicity is both a virtue and a
detriment. The virtue is that the model is so sim-
ple that its parameters can usually be estimated
well enough to have predictive value based on the

3 We limit ourselves to showing that the forecast errors
are compatible with our model being correct, and we do
not try to show that they could be compatible with the
experience curve model being spurious.

short data sets that are typically available4. The
detriment is that such a simple model neglects
many effects that are likely to be important. A
large literature starting with Arrow (1962) has
convincingly argued that learning-by-doing occurs
during the production (or investment) process,
leading to decreasing unit costs. But innovation
is a complex process relying on a variety of inter-
acting factors such as economies of scale, input
prices, R&D and patents, knowledge depreciation
effects, or exogenous time trends.5 For instance,
Candelise et al. (2013) argue that there is a lot
of variation around the experience curve trend in
solar PV, due to a number of unmodelled mecha-
nisms linked to industrial dynamics and interna-
tional trade, and Funk & Magee (2014) noted that
significant technological improvements may take
place even though production experience did not
really accumulate. Another important aspect that
we do not address is reverse causality (Kahouli-
Brahmi 2009, Witajewski-Baltvilks et al. 2015).
Here we have intentionally focused on the sim-
plest case in order to develop the method.

2 Empirical framework

2.1 The basic model

Experience curves postulate that unit costs de-
crease by a constant factor for every doubling of
cumulative production6. This implies a linear re-
lationship between the log of the cost, which we
denote y, and the log of cumulative production

4 For short data sets such as most of those used here,
fitting more than one parameter often results in degrada-
tion in out-of-sample performance (Nagy et al. 2013).

5 For examples of papers discussing these effects within
the experience curves framework, see Argote et al. (1990),
Berndt (1991), Isoard & Soria (2001), Papineau (2006),
Söderholm & Sundqvist (2007), Jamasb (2007), Kahouli-
Brahmi (2009), Bettencourt et al. (2013), Benson & Magee
(2015) and Nordhaus (2014).

6 For other parametric models relating experience to
costs see Goldberg & Touw (2003) and Anzanello & Fogli-
atto (2011).
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which we denote x:

yt = y0 + ωxt. (1)

This relationship has also often been called “the
learning curve” or the experience curve. We will
often call it “Wright’s law” in reference to Wright’s
original study, and to express our agnostic view
regarding the causal mechanism. Generally, ex-
perience curves are estimated as

yt = y0 + ωxt + ιt, (2)

where ιt is i.i.d. normal noise. However, it has
sometimes been noticed that residuals may be
autocorrelated. For instance Womer & Patter-
son (1983) noticed that autocorrelation “seems
to be an important problem” and Lieberman
(1984) “corrected” for autocorrelation using the
Cochrane-Orcutt procedure.7. Bailey et al. (2012)
proposed to estimate Eq.(1) in first difference

yt − yt−1 = ω(xt − xt−1) + ηt, (3)

where ηt are i.i.d errors ηt ∼ N (0, σ2
η). In Eq.(3),

noise accumulates so that in the long run the vari-
ables in level can deviate significantly from the
deterministic relationship. To see this, note that
(assuming x0 = log(1) = 0) Eq. (3) can be rewrit-
ten as

yt = y0 + ωxt +
t∑
i=1

ηi,

which is the same as Eq.(2) except that the noise
is accumulated across the entire time series. In
contrast, Eq.(2) implies that even in the long run
the two variables should be close to their deter-
ministic relationship.

If y and x are I(1)8, Eq.(2) defines a cointe-
grated relationship. We have not tested for coin-
tegration rigorously, mostly because unit root and
cointegration tests have uncertain properties in

7See also McDonald (1987), Hall & Howell (1985), and
Goldberg & Touw (2003) for further discussion of the effect
of autocorrelation on different estimation techniques.

8A variable is I(1) or integrated of order one if its first
difference yt+1 − yt is stationary.

small samples, and our time series are typically
short and they are all of different length. Never-
theless, we have run some analyses suggesting that
the difference model may be more appropriate.
First of all in a majority of cases we found that
model (2) resulted in a Durbin-Watson statistic
lower than the R2, indicating a risk of spurious re-
gression and suggesting that first-differencing may
be appropriate9. Second, the variance of the resid-
uals of the level model were generally higher, so
that the tests proposed in Harvey (1980) gener-
ally favored the first-difference model. Third, we
ran cointegration tests in the form of Augmented
Dickey-Fuller tests on the residuals of the regres-
sion (2), again generally suggesting a lack of coin-
tegration. While a lengthy study using different
tests and paying attention to differing sample sizes
would shed more light on this issue, in this paper
we will use Eq. (3) (with autocorrelated noise).
The simplicity of this specification is also moti-
vated by the fact that we want to have the same
model for all technologies, we want to be able to
calculate the variance of the forecast errors, and
we want to estimate parameters with very short
estimation windows so as to obtain as many fore-
cast errors as possible.

We will compare our forecasts using Wright’s
law with those of a univariate time series model
which we call Moore’s law

yt − yt−1 = µ+ nt. (4)

This is a random walk with drift. The forecast
errors have been analyzed for i.i.d. normal nt and
for nt = vt + θvt−1 with i.i.d. normal vt (keeping
the simplest forecasting rule) in Farmer & Lafond
(2016). As we will note throughout the paper, if
cumulative production grows at a constant loga-
rithmic rate of growth, i.e. xt+1 − xt = r for all
t, Moore’s and Wright’s laws are observationally
equivalent in the sense that Eq. (3) becomes Eq.

9 Note, however, that since we do not include an in-
tercept in the difference model and since the volatility of
experience is low, first differencing is not a good solution
to the spurious regression problem.

4



(4) with µ = ωr. This equivalence has already
been noted by Sahal (1979) and Ferioli & Van der
Zwaan (2009) for the deterministic case. Nagy
et al. (2013), using a dataset very close to ours,
showed that using trend stationary models to es-
timate the three parameters independently (Eq.
(2) and regressions of the (log) costs and experi-
ence levels on a time trend), the identity µ̂ = ω̂r̂
holds very well for most technologies. Here we
will replicate this result using difference station-
ary models.

2.2 Hindcasting and surrogate data
procedures

To evaluate the predictive ability of the models,
we follow closely Farmer & Lafond (2016) by using
hindcasting to compute as many forecast errors as
possible and using a surrogate data procedure to
test their statistical compatibility with our mod-
els. Pretending to be in the past, we make pseudo
forecasts of values that we are able to observe and
compute the errors of our forecasts. More pre-
cisely, our procedure is as follows. We consider all
periods for which we have (m+1) years of observa-
tions to estimate the parameters, and at least one
year ahead to make a forecast (unless otherwise
noted we choose m=5). For each of these periods,
we estimate the parameters and make all the fore-
casts for which we can compute forecast errors.
Because of our focus on testing the method and
comparing with univariate forecasts, throughout
the paper we assume that cumulative production
is known in advance. Having obtained a set of
forecast errors, we compute a number of indica-
tors, such as the distribution of the forecast errors
or the mean squared forecast error, and compare
the empirical values to what we expect given the
size and structure of our dataset.

To know what we expect to find, we use an ana-
lytical approach as well as a surrogate data proce-
dure. The analytical approach simply consists in
deriving an approximation of the distribution of
forecast errors. However, the hindcasting proce-

dure generates forecast errors which, for a single
technology, are not independent10. However, in
this paper we have many short time series so that
the problem is somewhat limited (see Appendix
A). Nevertheless, we deal with it by using a surro-
gate data procedure: we simulate many datasets
similar to ours and perform the same analysis,
thereby determining the sampling distribution of
any statistics of interest.

2.3 Parameter estimation

To simplify notation a bit, let Yt = yt − yt−1 and
Xt = xt−xt−1 be the changes of y and x in period
t. We estimate Wright’s exponent from Eq.(3)
by running an OLS regression through the origin.
Assuming that we have data for times i = 1...(m+
1), minimizing the squared errors gives

ω̂ =

∑m+1
i=2 XiYi∑m+1
i=2 X2

i

, (5)

where m is the sample size.11 Substituting ωXi +
ηi for Yi, we have

ω̂ = ω +

∑m+1
i=2 Xiηi∑m+1
i=2 X2

i

. (6)

The variance of the noise σ2
η is estimated as the

regression standard error

σ̂2
η =

1

m− 1

m+1∑
i=2

(Yi − ω̂Xi)
2. (7)

For comparison, parameter estimation in the
univariate model Eq. (4) as done in Farmer &
Lafond (2016) yields the sample mean µ̂ and vari-
ance K̂2 of Yt ∼ N (µ,K2).

10For a review of forecasting ability tests and a discus-
sion of how the estimation scheme affects the forecast er-
rors, see West (2006) and Clark & McCracken (2013).

11 Throughout the paper, we will use the hat symbol for
estimated parameters when the estimation is made using
only the m + 1 years of data on which the forecasts are
based. When we provide full sample estimates we use the
tilde symbol.
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2.4 Forecast errors

Let us first recall that for the univariate model Eq.
(4), the variance of the forecast errors is given by
(Sampson 1991, Clements & Hendry 2001, Farmer
& Lafond 2016)

E[E2M,τ ] = K2

(
τ +

τ 2

m

)
, (8)

where the subscript M indicates forecast errors ob-
tained using “Moore” ’s model. It shows that in the
simplest model, the expected squared forecast er-
ror grows due to future noise accumulating (τ)
and to estimation error (τ 2/m). These terms will
reappear later so we will use a shorthand

A ≡ τ +
τ 2

m
, (9)

We now compute the variance of the forecast
errors for Wright’s model. If we are at time t =
m+ 1 and look τ steps ahead into the future, we
know that

yt+τ = yt + ω(xt+τ − xt) +
t+τ∑
i=t+1

ηi. (10)

To make the forecasts we assume that the future
values of x are known, i.e. we are forecasting costs
conditional on a given level of future production.
This is a common practice in the literature (Meese
& Rogoff 1983, Alberth 2008). More formally, the
point forecast at horizon τ is

ŷt+τ = yt + ω̂(xt+τ − xt). (11)

The forecast error is the difference between Eqs.
(10) and (11), that is

Eτ ≡ yt+τ−ŷt+τ = (ω−ω̂)
t+τ∑
i=t+1

Xi+
t+τ∑
i=t+1

ηi. (12)

We can derive the expected squared error.
Since the Xis are known constants, using ω̂ from
Eq. (6) and the notation m+ 1 = t, we find

E[E2τ ] = σ2
η

(
τ +

(∑t+τ
i=t+1Xi

)2∑t
i=2X

2
i

)
. (13)

2.5 Comparison of Wright’s law
and Moore’s law

Sahal (1979) was the first to point out that in the
deterministic limit the combination of exponen-
tially increasing cumulative production and ex-
ponentially decreasing costs gives Wright’s law.
Here we generalize this result in the presence of
noise and show how variability in the production
process affects this relationship.

Under the assumption that production growth
rates are constant (Xi = r) and letting m = t− 1
in Eq. (13) gives the result that the variance
of Wright’s law forecast errors are precisely the
same as the variance of Moore’s law forecast er-
rors given in Eq.(8), with K̂ = σ̂η. To see how
the fluctuations in the growth rate of experience
impact forecast errors we can rewrite Eq. (13) as

E[E2τ ] = σ2
η

(
τ +

τ 2

m

r̂2(f)
σ̂2
x,(p) + r̂2(p)

)
, (14)

where σ̂2
x,(p) refers to the estimated variance of

past experience growth rates, r̂(p) to the estimated
mean of past experience growth rates, and r̂(f) to
the estimated mean of future experience growth
rates.12

This makes it clear that the higher the volatil-
ity of experience (σ2

x), the lower the forecast er-
rors. This comes from a simple, well known fact
of regression analysis: high variance of the regres-
sor makes the estimates of the slope more precise.
Here the high standard errors in the estimation of
ω (due to low σ2

x) decrease the part of the forecast
error variance due to parameter estimation, which
is associated with the term τ 2/m.

This result shows that for Wright’s law fore-
casts to work well (and in particular to outper-
form Moore’s law), it is better to have cumula-
tive production growth rates that fluctuate a great
deal. Unfortunately for our data this is typically
not the case. Instead, empirically cumulative pro-
duction follows a fairly smooth exponential trend.

12 The past refers to data at times (1, . . . , t) and the
future to times (t+ 1, . . . , t+ τ).
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To explain this finding we calculated the stochas-
tic properties of cumulative production assuming
that production is a geometric random walk with
drift g and volatility σq. In Appendix B, using a
saddle point approximation for the long time limit
we find that E[X] ≡ r ≈ g and

Var[X] ≡ σ2
x ≈ σ2

q tanh(g/2), (15)

where tanh is the hyperbolic tangent function. We
have tested this remarkably simple relationship
using artificially generated data and we find that
it works reasonably well.

These results show that cumulative production
grows at the same rate as production. More im-
portantly, since 0 < tanh(g/2) < 1 (and here we
assume g > 0), the volatility of cumulative pro-
duction is lower than the volatility of production.
This is not surprising: It is well-known that inte-
gration acts as a low pass filter, in this case mak-
ing cumulative production smoother than produc-
tion. Thus if production follows a geometric ran-
dom walk with drift, experience is a smoothed
version, making it hard to distinguish from an ex-
ogenous exponential trend. When this happens
Wright’s law and Moore’s law yield similar pre-
dictions.

2.6 Autocorrelation

We now turn to an extension of the basic model.
As we will see, the data shows some evidence
of autocorrelation. Following Farmer & Lafond
(2016), we augment the model to allow for first
order moving average autocorrelation. For the
autocorrelated Moore’s law model ( “Integrated
Moving Average of order 1”)

yt − yt−1 = µ+ vt + θvt−1,

Farmer & Lafond (2016) obtained a formula for
the forecast error variance when the forecasts are
performed assuming no autocorrelation

E[E2M,τ ] = σ2
v

[
− 2θ +

(
1 +

2(m− 1)θ

m
+ θ2

)
A
]
,

(16)

where A = τ + τ2

m
(Eq.(9)). Here we extend this

result to the autocorrelated Wright’s law model

yt − yt−1 = ω(xt − xt−1) + ut + ρut−1, (17)

where ut ∼ N (0, σ2
u). We treat ρ as a known

parameter. Moreover, we will assume that it is the
same for all technologies and we will estimate it as
the average of the ρ̃j estimated on each technology
separately (as described in the next section). This
is a delicate assumption, but it is motivated by the
fact that many of our time series are too short
to estimate a specific ρj reliably, and assuming
a universal, known value of ρ allows us to keep
analytical tractability.

The forecasts are made exactly as before, but
the forecast error now is

Eτ =
m+1∑
j=2

Hj[vj +ρvj−1]+
t+τ∑

T=t+1

[vT +ρvT−1], (18)

where the Hj are defined as

Hj = −
∑t+τ

i=t+1Xi∑t
i=2X

2
i

Xj. (19)

The forecast error can be decomposed as a sum of
independent normally distributed variables, from
which the variance can be computed as

E[E2τ ] = σ2
u

(
ρ2H2

2 +
m∑
j=2

(Hj + ρHj+1)
2

+ (ρ+Hm+1)
2 + (τ − 1)(1 + ρ)2 + 1

)
.

(20)

When we will do real forecasts (Section 4), we
will take the rate of growth of cumulative pro-
duction as constant. Using Xi = r, we have
Hi = −τ/m. As expected from Sahal’s identity,
simplifying Eq.(20) under this assumption gives
Eq.(16) where θ is substituted by ρ and σv is sub-
stituted by σu,

E[E2τ ] = σ2
u

[
−2ρ+

(
1+

2(m− 1)ρ

m
+ρ2

)
A
]
. (21)
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In practice we compute σ̂η using Eq. (7), so that
σu may be estimated as

σ̂u =
√
σ̂2
η/(1 + ρ2).

Therefore the pertinent normalized error is E2τ /σ̂2
η.

To gain more intuition on Eq.(21), note that for
τ � 1 and m� 1 it can be approximated as

E
[(Eτ

ση

)2 ]
≈ (1 + ρ)2

1 + ρ2

(
τ +

τ 2

m

)
.

For all models (Moore and Wright with and
without autocorrelated noise), having determined
the variance of the forecast errors we can normal-
ize them so that they follow a Standard Normal
distribution

Eτ√
E[E2τ ]

∼ N (0, 1) (22)

In what follows we will replace σ2
η by its estimated

value, so that when E and σ̂η are independent
the reference distribution is Student. However,
for small sample size m the Student distribution
is only a rough approximation, as shown in Ap-
pendix A, where it is also shown that the theory
works well when the variance is known, or when
the variance is estimated but m is large enough.

2.7 Comparing Moore and Wright
at different forecast horizons

One objective of the paper is to compare Moore’s
law and Wright’s law forecasts. To normalize
Moore’s law forecasts, Farmer & Lafond (2016)
used the estimate of the variance of the delta log
cost time series K̂2, as suggested by Eq. (8), i.e.

εM = EM/K̂, (23)

To compare the two models, we propose that
Wright’s law forecast errors can be normalized by
the very same value

εW = EW/K̂, (24)

Using this normalization, we can plot the nor-
malized mean squared errors from Moore’s and
Wright’s models at each forecast horizon. These
are directly comparable, because the raw errors
are divided by the same value, and these are
meaningful because Moore’s normalization en-
sures that the errors from different technologies
are comparable and can reasonably be aggregated.
In the context of comparing Moore and Wright,
when pooling the errors of different forecast hori-
zons we also use the normalization from Moore’s
model (neglecting autocorrelation for simplicity),
A ≡ τ + τ 2/m (see Farmer & Lafond (2016) and
Eqs. 8 and 9).

3 Empirical results

3.1 The data

We mostly use data from the performance curve
database13 created at the Santa Fe Institute by
Bela Nagy and collaborators from personal com-
munications and from Colpier & Cornland (2002),
Goldemberg et al. (2004), Lieberman (1984), Lip-
man & Sperling (1999), Zhao (1999), McDon-
ald & Schrattenholzer (2001), Neij et al. (2003),
Moore (2006), Nemet (2006), Schilling & Es-
mundo (2009). We augmented the dataset with
data on solar energy constructed from public re-
leases of the consulting firms Strategies Unlim-
ited, Navigant and SPV Market Research, which
gives the average selling price of solar PV mod-
ules, and that we corrected for inflation using the
US GDP deflator.

13The data can be accessed at pcdb.santafe.edu.
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Figure 1: Scatter plot of unit costs against cumulative
production.

This database gives a proxy for unit costs14 for
a number of technologies over variable periods of
time. In principle we would prefer to have data
on unit costs, but often these are unavailable and
the data is about prices15. Since the database is
built from experience curves found in the litera-
ture, rather than from a representative sample of
products/technologies, there are limits to the ex-
ternal validity of our study but unfortunately we

14 In a few cases (milk and automotive), a measure of
performance is used instead of costs, and automotive’s ex-
perience is computed based on distance driven. The main
results would not be severely affected by the exclusion of
these two time series. Also, unit cost is generally com-
puted from total cost and production of a year or batch,
not from actual observation of every unit cost. Different
methods may give slightly different results (Gallant 1968,
Womer & Patterson 1983, Goldberg & Touw 2003), but
our dataset is too heterogenous to attempt any correction.
Obviously, changes in unit costs do not come from tech-
nological progress only, and it is difficult to account for
changes in quality, but unit costs are nevertheless a widely
used and defensible proxy.

15This implies a bias whenever prices and costs do not
have the same growth rate, as is typically the case when
pricing strategies are dynamic and account for learning ef-
fects (for instance predatory pricing). For a review of the
industrial organization literature on this topic, see Thomp-
son (2010).

do not know of a database that contains suitably
normalized unit costs for all products.

We have selected technologies to minimize cor-
relations between the different time series, by
removing technologies that are too similar (e.g.
other data on solar photovoltaics). We have also
refrained from including very long time series that
would represent a disproportionate share of our
forecast errors, make the problem of autocorrela-
tion of forecast errors very pronounced, and pre-
vent us from generating many random datasets
for reasons of limited computing power. Starting
with a set of 60 technologies, we have removed
all non-improving technologies (i.e. for which we
could not reject the hypothesis that there was
no significant decrease in cost, as in Farmer &
Lafond (2016)). We are left with 48 technolo-
gies belonging to different sectors (chemical, en-
ergy, hardware, consumer durables, and food),
although chemicals from the historical reference
(Boston Consulting Group 1972) represent a large
part of the dataset. Next, two additional tech-
nologies are removed from the dataset, because
their production declines over the period so that
we cannot apply the correction to cumulative pro-
duction described below. Our final dataset is very
similar to Farmer & Lafond (2016), except that we
had to remove observations and in some cases en-
tire technologies because data on production was
not available.

3.2 Estimating cumulative produc-
tion

A potentially serious problem in experience curve
studies is that one generally does not observe the
complete history of the technology, so that sim-
ply summing up observed production misses the
experience previously accumulated. There is no
perfect solution to this problem. For each tech-
nology, we infer the initial cumulative production
using a procedure common in the “R&D capital”
literature (Hall & Mairesse 1995), although not
often used in experience curve studies (for an ex-
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ception see Nordhaus (2014)). It assumes that
production grew as Qt+1 = Qt(1 + gd) and ex-
perience accumulates as Zt+1 = Zt + Qt, so that
Zt1 ≈ Qt1/ĝd. Note that this formulation implies
that experience at time t does not include produc-
tion of time t, so the change in experience from
time t to t+ 1 does not include how much is pro-
duced during year t + 1. In this sense we assume
that the growth of experience affects technolog-
ical progress with a certain time lag. We have
experimented with slightly different ways of con-
structing the experience time series, and the ag-
gregated results do not change much, due to the
high persistence of production growth rates.

A more important consequence of this correc-
tion is that products with a small production
growth rate will have a very important correction
for initial cumulative production. In turn, this
large correction of initial cumulative production
leads to significantly lower values for the annual
growth rates of cumulative production. As a re-
sult, the experience exponent ω̂ becomes larger
than if there was no correction. This explains why
products like Milk, which have a very low rate of
growth of production, have such a large experi-
ence exponent. Depending on the product, this
correction may be small or large, and it may be
meaningful or not. Here we have decided to use
this correction for all products.

3.3 Descriptive statistics and Sa-
hal’s identity

Table 1 summarizes our dataset, showing in par-
ticular the parameters estimated using the full
sample. Fig. 2 complements the table by show-
ing histograms for the distribution of the most
important parameters. Note that we denote esti-
mated parameters using a tilde because we use the
full sample (when using the small rolling window,
we used the hat notation). To estimate the ρ̃j,
we have used a maximum likelihood estimation of
Eq. 17 (letting ω̃MLE differ from ω̃).
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Figure 2: Histograms of estimated parameters.
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Figure 3: Comparison of residuals standard deviation
from Moore’s and Wright’s models.

Fig. 3 compares the variance of the noise esti-
mated from Wright’s and Moore’s models. These
key quantities express how much of the change
in (log) cost is left unexplained by each model;
they also enter as direct factor in the expected
mean squared forecast error formulas. The lower
the value, the better the fit and the more reli-
able the forecasts. The figure shows that for each
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technology the two models give similar values; see
Table 1).

Next, we show Sahal’s identity as in Nagy et al.
(2013). Sahal’s observation is that if cumula-
tive production and costs both have exponential
trends r and µ, respectively, then costs and pro-
duction have a power law (constant elasticity) re-
lationship parametrized by ω = µ/r. One way to
check the validity of this relationship is to mea-
sure µ, r and ω independently and plot ω against
µ/r. Fig. 4 shows the results and confirms the
relevance of Sahal’s identity.
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Figure 4: Illustration of Sahal’s identity.

To explain why Sahal’s identity works so well
and Moore’s and Wright’s laws have similar ex-
planatory power, in Section 2.4 we have shown
that in theory if production grows exponentially,
cumulative production grows exponentially with
an even lower volatility. Fig. 5 shows how this
theoretical result applies to our dataset. Know-
ing the drift and volatility of the (log) production
time series, we are able to predict the drift and
volatility of the (log) cumulative production time
series fairly well.
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Figure 5: Test of Eq. 15 relating the volatility of
cumulative production to the drift and volatility of
production. The inset shows the drift of cumulative
production r̂ against the drift of production ĝ.

3.4 Comparing Moore’s and
Wright’s law forecast errors

Moore’s law forecasts are based only on the cost
time series, whereas Wright’s law forecasts use in-
formation about future experience to predict fu-
ture costs. Thus, we expect that in principle
Wright’s forecasts should be better. We now com-
pare Wright’s and Moore’s models in a number of
ways. The first way is simply to show a scat-
ter plot of the forecast errors from the two mod-
els. Fig. 6 shows this scatter plot for the errors
normalized by K̂

√
A (i.e. “Moore-normalized”,

see Eqs 8 – 9 and 23 and 24), with the identity
line as a point of comparison. It is clear that
they are highly correlated. When Moore’s law
over(under)predicts, it is likely that Wright’s law
over(under)predicts as well, and when Moore’s
law leads to a large error, it is likely that Wright’s
law leads to a large error as well. In Fig. 7,
the main plot shows the mean squared Moore-
normalized forecast error ε2M and ε2W (see Section
2.7), where the average is taken over all available
forecast errors of a given forecast horizon (note
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Cost Production Cumul. Prod. Wright’s law
T µ̃ K̃ g̃ σ̃q r̃ σ̃x ω̃ σ̃η ρ̃

Automotive 21 -0.076 0.047 0.026 0.011 0.027 0.000 -2.832 0.048 1.000
Milk 78 -0.020 0.023 0.008 0.020 0.007 0.000 -2.591 0.023 0.019

Neoprene Rubber 13 -0.021 0.020 0.015 0.055 0.015 0.001 -1.447 0.020 0.882
Phthalic Anhydride 18 -0.076 0.152 0.061 0.094 0.058 0.006 -1.198 0.155 0.321

Sodium 16 -0.013 0.023 0.013 0.081 0.012 0.001 -1.179 0.023 0.407
Pentaerythritol 21 -0.050 0.066 0.050 0.107 0.050 0.006 -0.954 0.068 0.343

Methanol 16 -0.082 0.143 0.097 0.081 0.091 0.004 -0.924 0.142 0.289
Hard Disk Drive 19 -0.593 0.314 0.590 0.307 0.608 0.128 -0.911 0.364 -0.569

Geothermal Electricity 26 -0.049 0.022 0.043 0.116 0.052 0.013 -0.910 0.023 0.175
Phenol 14 -0.078 0.090 0.088 0.055 0.089 0.004 -0.853 0.092 -1.000

Transistor 38 -0.498 0.240 0.585 0.157 0.582 0.122 -0.849 0.226 -0.143
Formaldehyde 11 -0.070 0.061 0.086 0.078 0.085 0.005 -0.793 0.063 0.489
Ethanolamine 18 -0.059 0.042 0.076 0.076 0.080 0.005 -0.748 0.041 0.355
Caprolactam 11 -0.103 0.075 0.136 0.071 0.142 0.009 -0.746 0.071 0.328
Ammonia 13 -0.070 0.099 0.096 0.049 0.102 0.007 -0.740 0.095 1.000

Acrylic Fiber 13 -0.100 0.057 0.127 0.126 0.137 0.020 -0.726 0.056 -0.141
Ethylene Glycol 13 -0.062 0.059 0.089 0.107 0.083 0.006 -0.711 0.062 -0.428

DRAM 37 -0.446 0.383 0.626 0.253 0.634 0.185 -0.680 0.380 0.116
Benzene 16 -0.056 0.083 0.087 0.114 0.087 0.012 -0.621 0.085 -0.092
Aniline 12 -0.072 0.095 0.110 0.099 0.113 0.008 -0.620 0.097 -1.000

VinylAcetate 13 -0.082 0.061 0.131 0.080 0.129 0.010 -0.617 0.065 0.341
Vinyl Chloride 11 -0.083 0.050 0.136 0.085 0.137 0.008 -0.613 0.049 -0.247
Polyethylene LD 15 -0.085 0.076 0.135 0.075 0.139 0.009 -0.611 0.075 0.910
Acrylonitrile 14 -0.084 0.108 0.121 0.178 0.134 0.025 -0.605 0.109 1.000

Styrene 15 -0.068 0.047 0.112 0.089 0.113 0.008 -0.585 0.050 0.759
Maleic Anhydride 14 -0.069 0.114 0.116 0.143 0.119 0.013 -0.551 0.116 0.641

Ethylene 13 -0.060 0.057 0.114 0.054 0.114 0.005 -0.526 0.057 -0.290
Urea 12 -0.062 0.094 0.121 0.073 0.127 0.011 -0.502 0.093 0.003

Polyester Fiber 13 -0.121 0.100 0.261 0.132 0.267 0.034 -0.466 0.094 -0.294
Bisphenol A 14 -0.059 0.048 0.136 0.136 0.135 0.012 -0.437 0.048 -0.056
Paraxylene 11 -0.103 0.097 0.259 0.326 0.228 0.054 -0.417 0.104 -1.000

Polyvinylchloride 22 -0.064 0.057 0.137 0.136 0.144 0.024 -0.411 0.062 0.319
Low Density Polyethylene 16 -0.103 0.064 0.213 0.164 0.237 0.069 -0.400 0.071 0.473

Sodium Chlorate 15 -0.033 0.039 0.076 0.077 0.084 0.006 -0.397 0.039 0.875
TitaniumSponge 18 -0.099 0.099 0.196 0.518 0.241 0.196 -0.382 0.075 0.609
Photovoltaics 39 -0.119 0.151 0.316 0.207 0.320 0.137 -0.374 0.142 0.017

Monochrome Television 21 -0.060 0.072 0.093 0.365 0.130 0.093 -0.368 0.074 -0.444
Cyclohexane 17 -0.055 0.052 0.134 0.214 0.152 0.034 -0.317 0.057 0.375

Polyethylene HD 15 -0.090 0.075 0.250 0.166 0.275 0.074 -0.307 0.079 0.249
Laser Diode 12 -0.293 0.202 0.708 0.823 0.824 0.633 -0.270 0.227 0.156
Aluminum 17 -0.015 0.044 0.056 0.075 0.056 0.004 -0.264 0.044 0.761

Beer 17 -0.036 0.042 0.137 0.091 0.146 0.016 -0.235 0.043 -1.000
Primary Aluminum 39 -0.022 0.080 0.088 0.256 0.092 0.040 -0.206 0.080 0.443

Polystyrene 25 -0.061 0.086 0.205 0.361 0.214 0.149 -0.163 0.097 0.074
Primary Magnesium 39 -0.031 0.089 0.135 0.634 0.158 0.211 -0.131 0.088 -0.037

Wind Turbine 19 -0.038 0.047 0.336 0.570 0.357 0.337 -0.071 0.050 0.750

Table 1: Parameter estimates
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that some technologies are more represented than
others). The solid diagonal line is the bench-
mark for the Moore model without autocorrela-
tion, i.e. the line y = m−1

m−3A (Farmer & La-
fond 2016). Wright’s model appears slightly bet-
ter at the longest horizons, however there are not
many forecasts at these horizons so we do not put
too much emphasis on this finding. The two in-
sets show the distribution of the rescaled Moore-
normalized errors ε/

√
A, either as a cumulative

distribution function (top left) or using the prob-
ability integral transform16 (bottom right). All
three visualizations confirm that Wright’s model
only slightly outperform Moore’s model.
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Figure 6: Scatter plot of Moore-normalized forecast
errors εM and εW (forecasts are made using m = 5).
This shows that in the vast majority of cases Wright’s
and Moore’s law forecast errors have the same sign
and a similar magnitude, but not always.

16 The Probability Integral Transform is a transforma-
tion that allows to compare data against a theoretical
distribution by transforming it and comparing it against
the Uniform distribution. See for example Diebold et al.
(1998), who used it to construct a test for evaluating den-
sity forecasts.
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Figure 7: Comparison of Moore-normalized forecast
errors from Moore’s and Wright’s models. The main
chart shows the mean squared forecast errors at dif-
ferent forecast horizons. The insets show the distri-
bution of the normalized forecast errors as an empir-
ical cumulative distribution function against the Stu-
dent distribution (top left) and as a probability inte-
gral transform against a uniform distribution (bottom
right).

3.5 Wright’s law forecast errors

In this section, we analyze in detail the forecast er-
rors from Wright’s model. We will use the proper
normalization derived in Section 2.4, but since it
does not allow us to look at horizon specific er-
rors we first look again at the horizon specific
Moore-normalized mean squared forecast errors.
Fig. 8 shows the results for different values of
m (for m = 5 the empirical errors are the same
as in Fig. 7). The confidence intervals are cre-
ated using the surrogate data procedure described
in Section 2.2, in which we simulate many ran-
dom datasets using the autocorrelated Wright’s
law model (Eq. 17) and the parameters of Table
1 forcing ρj = ρ∗ = 0.22 (see below). We then ap-
ply the same hindcasting, error normalization and
averaging procedure to the surrogate data that
we did for the empirical data, and show with blue
lines the mean and 95% confidence intervals. This
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suggests that the empirical data is compatible
with the model (17) in terms of Moore-normalized
forecast errors at different horizons.
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Figure 8: Mean squared Moore-normalized forecast
errors of the Wright’s law model versus forecast hori-
zon. The 95% quantiles (dashed lines) and the mean
(solid line) are computed using simulations as de-
scribed in the text.

We now analyze the forecast errors from
Wright’s model normalized using the (approx-
imate) theory of Section 2.4. Again we use
the hindcasting procedure and unless otherwise
noted, we use an estimation window of m = 5
points (i.e. 6 years) and a maximum forecasting
horizon τmax = 20. To normalize the errors, we
need to choose a value of ρ. This is a difficult
problem, because for simplicity we have assumed
that ρ is the same for all technologies, but in real-
ity it probably is not. We have experimented with
different methods of choosing ρ based on mod-
elling the forecast errors, for instance by looking
for the value of ρ which makes the distribution
of normalized errors closest to a Student distri-
bution. While these methods may suggest that
ρ ≈ 0.4, they generally give different values of
ρ for different values of m and τmax (which indi-
cates that some non-stationarity/misspecification
is present). Moreover, since the theoretical fore-

cast errors do not exactly follow a Student distri-
bution (see Appendix A) this estimator is biased.
For simplicity, we use the average value of ρ̃ in our
dataset, after removing the 7 values of ρ̃ whose
absolute value was greater than 0.99 (which may
indicate a misspecified model). Throughout the
paper, we will thus use ρ∗ = 0.22.
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Figure 9: Cumulative distribution of the normalized
forecast errors, m = 5, τmax = 20, and the associated
ρ∗ = 0.22.
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In Fig. 9, we show the empirical cumulative dis-
tribution function of the normalized errors (for ρ∗
and ρ = 0) and compare it to the Student predic-
tion. In Fig. 10 we show the probability integral
transform of the normalized errors (assuming a
Student distribution, and using ρ = ρ∗). In ad-
dition, Fig. 10 shows the confidence intervals ob-
tained by the surrogate data method, using data
simulated under the assumption ρ = ρ∗. Again,
the results confirm that the empirical forecast er-
rors are compatible with Wright’s law, Eq. (17).

4 Application to solar photo-
voltaic modules

In this section we apply our method to solar pho-
tovoltaic modules. Technological progress in solar
photovoltaics (PV) is a very prominent example
of the use of experience curves.17 Of course, the
limitations of using experience curve models are
valid in the context of solar PV modules; we refer
the reader to the recent studies by Zheng & Kam-
men (2014) for a discussion of economies of scale,
innovation output and policies; by de La Tour
et al. (2013) for a discussion of the effects of in-
put prices; and by Hutchby (2014) for a detailed
study of levelized costs (module costs represent
only part of the cost of producing solar electric-
ity).

Historically (Wright 1936, Alchian 1963), the
estimation of learning curves suggested that costs
would drop by 20% for every doubling of cumu-
lative production, although these early examples
are almost surely symptoms of a sample bias. This
corresponds to an estimated elasticity of about
ω = 0.33. As it turns out, estimations for PV have
been relatively close to this number. Here we have
a progress ratio of 2−0.37 = 23%. A recent study
(de La Tour et al. 2013) contains a more complete

17 Neij (1997), Isoard & Soria (2001), Schaeffer et al.
(2004), Van der Zwaan & Rabl (2004), Nemet (2006), Pa-
pineau (2006), Swanson (2006), Alberth (2008), Kahouli-
Brahmi (2009), Junginger et al. (2010), Candelise et al.
(2013).

review of previous experience curve studies for
PV, and finds an average progress ratio of 20.2%.
There are some differences across studies, mostly
due to data sources, geographic and temporal di-
mension, and choice of proxy for experience. Our
estimate here differs also because we use a dif-
ferent estimation method (first-differencing), and
because we correct for initial cumulative produc-
tion (most other studies either have the data, or
do not make a correction; it is quite small here,
less than a MW).

In order to compare a forecast based on
Wright’s law, which gives cost as a function of
cumulative production, with a forecast based on
Moore’s law, which gives cost as a function of
time, we need to make an assumption about the
production at a given point in time. Here we pro-
vide a distributional forecast for the evolution of
PV costs under the assumption that cumulative
production will keep growing at exactly the same
rate as in the past, but without any variance, and
we assume that we know this in advance. One
should bear in mind that this assumption is purely
to provide a point of comparison. The two mod-
els have a different purpose: Moore’s law gives an
unconditional forecast at a given point in time,
and Wright’s law a forecast conditioned on cumu-
lative production achieving a given level. While
it is perfectly possible to use values from a logis-
tic diffusion model or from expert forecasts, here
we illustrate our method based on the exponen-
tial assumption to emphasise again the similarity
of Moore’s and Wright’s laws.

Following the discussion of Sections 2.4 and 2.6,
our distributional forecast is

yt+τ ∼ N (ŷt+τ , V (ŷt+τ )) (25)

with
ŷt+τ = yt + ω̃r̃τ (26)

V (yt+τ ) =
σ̃2
η

[
− 2ρ∗ +

(
1 + 2(T−2)ρ∗

T−1 + ρ∗2
)
A
]

(1 + ρ∗2)
(27)

where A = τ + τ2

m
(Eq.(9)), and the other param-

eters are taken from Table 1.
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Our point of comparison is the distributional
forecast of Farmer & Lafond (2016) based on
Moore’s law with autocorrelated noise. Fig. 11
shows the forecast for the mean log cost and its
95% prediction interval for the two models. The
point forecasts of the two models are almost ex-
actly the same because ω̂r̂ = −0.1199 ≈ µ̂ =
−0.1193. Moreover, Wright’s law prediction in-
tervals are slightly smaller because σ̂η = 0.142 <

K̂ = 0.151. To make the comparison easier,
we assume the same autocorrelation parameter18

θ = ρ = ρ∗. Overall, the forecasts are very similar
as shown in Fig. 11.
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Figure 11: Comparison of Moore’s and Wright’s law
distributional forecasts (95% quantiles). The figure
uses θ = ρ = ρ∗.

In Fig. 12, we show the Wright’s law-based dis-
tributional forecast, but against cumulative pro-
duction. We show the forecast intervals corre-
sponding to 1, 1.5 and 2 standard deviations (cor-
responding approximately to 68, 87 and 95% con-
fidence intervals, respectively). The figure also
makes clear the large scale deployment assumed
by the forecast, with cumulative PV production

18Estimating θ∗ in the same way as ρ∗ (average across
all technologies of the measured MA(1) autocorrelation of
the residuals, removing the |θ̃j | ≈ 1), we find θ∗ = 0.26.

(log) growth rate of 32% per year. Again, we
note as a caveat that exponential diffusion leads
to fairly high numbers as compared to expert
opinions (Bosetti et al. 2012) and the academic
(Gan & Li 2015) and professional (Masson et al.
2013, International Energy Agency 2014) litera-
ture, which generally assumes that PV deploy-
ment will slow down for a number of reasons
such as intermittency and energy storage issues.
But other studies (Zheng & Kammen 2014, Jean
et al. 2015) do take more optimistic assumptions
as working hypothesis, and it is outside the scope
of this paper to model diffusion explicitly.
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Figure 12: Distributional forecast for the price of PV
modules up to 2025, using Eq. 25.

5 Conclusions

We presented a method to test the accuracy and
validity of experience curve forecasts. It leads to a
simple method for producing distributional fore-
casts at different forecast horizons. We compared
the experience curve forecasts with those from a
univariate time series model (Moore’s law of ex-
ponential progress), and found that they are fairly
similar. This is due to the fact that production
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tends to grow exponentially19, so that cumulative
production tends to grow exponentially with low
fluctuations, mimicking an exogenous exponential
time trend. We applied the method to solar pho-
tovoltaic modules, showing that if the exponential
trend in diffusion continues, they are likely to be-
come very inexpensive in the near future.

The method we introduce here is closely anal-
ogous to that introduced in Farmer & Lafond
(2016). Although Moore’s law and Wright’s law
tend to make forecasts of similar quality, it is im-
portant to emphasize that when it comes to pol-
icy, the difference is potentially very important.
While the correlation between costs and cumu-
lative production is well-established, we should
stress that the causal relationship is not. But to
the extent that Wright’s law implies that cumu-
lative production causally influences cost, costs
can be driven down by boosting cumulative pro-
duction. In this case one no longer expects the
two methods to make similar predictions, and the
method we have introduced here plays a useful
role in making it possible to think about not just
what the median effect would be, but rather the
likelihood of effects of different magnitudes.

Appendix

A Comparison of analytical
results to simulations

To check whether the analytical theory is reason-
able we use the following setting. We simulate 200
technologies for 50 periods. A single time series of
cumulative production is generated by assuming
that production follows a geometric random walk
with drift g = 0.1 and volatility σq = 0.1 (no cor-
rection for previous production is made). Cost is
generated assuming Wright’s law with ση = 0.1,
ω = −0.3 and ρ = 0.6.

19Recall that we selected technologies with a strictly pos-
itive growth rate of production.

Figure 13: Test of the theory for forecast errors. Top:
m = 5; Bottom: m = 40. Left: estimated variance;
Right: True variance.
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Figure 14: Test of the theory for forecast errors. In
the 3 cases m = 5. On the left, the variance is es-
timated. In the center, errors are normalized using
the true variance. On the right, we also used the true
variance but the errors are i.i.d.

Forecast errors are computed by the hindcast-
ing methodology, and normalized using either the
true ρ or ρ = 0. The results are presented in
Fig. 13 for m = 5, 40 and for estimated or true
variance (σ̂v = σ̂η/

√
1 + ρ2 or σv = ση/

√
1 + ρ2).

In all cases, using the proper normalization fac-
tor ρ = ρ∗ makes the distribution very close to
the predicted distribution (Normal or Student).
When m = 5 and the variance is estimated, we
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observe a slight departure from the theory as in
Farmer & Lafond (2016), which seems to be lower
for large m or when the true σv is known.

To see the deviation from the theory more
clearly, we repeat the exercise but this time we
apply the probability integral transform to the
resulting normalized forecast errors. We use the
same parameters, and another realization of the
(unique) production time series and of the (200)
cost time series. As a point of comparison, we also
apply the probability integral transform to ran-
domly generated values from the reference distri-
bution (Student when variance is estimated, Nor-
mal when the known variance is used), so that
confidence intervals can be plotted. This allows us
to see more clearly the departure from the Student
distribution when the variance is estimated and
m is small (left panel). When the true variance is
used (center panel), there is still some departure
but it is much smaller. Finally, for the latest panel
(right), instead of generating 200 series of 50 peri-
ods, we generated 198000 time series of 7 periods,
so that we have the same number of forecast er-
rors but they do not suffer from being correlated
due to the moving estimation window (only one
forecast error per time series is computed). In this
case we find that normalized forecast errors and
independently drawn normal values are similar.

Overall these simulation results confirm under
what conditions our theoretical results are use-
ful (namely, m large enough, or knowing the true
variance). For this reason, we have used the surro-
gate data procedure when testing the errors with
smallm and estimated variance, and we have used
the normal approximation when forecasting solar
costs based on almost 40 years of data.

B Derivation of the proper-
ties of cumulative produc-
tion

Here we give an approximation for the volatil-
ity of the log of cumulative production, assum-

ing that production follows a geometric random
walk with drift g and volatility σq. We use sad-
dle point methods to compute the expected value
of the log of cumulative production E[logZ], its
variance Var(logZ) and eventually our quantity
of interest σ2

x ≡ Var(X) ≡ Var(∆ logZ). The
essence of the saddle point method is to approxi-
mate the integral by taking into account only that
portion of the range of the integration where the
integrand assumes large values. More specifically
in our calculation we find the maxima of the inte-
grands and approximate fluctuations around these
points keeping quadratic and neglecting higher or-
der terms. Assuming the initial condition Z(0) =
1, we can write the cumulative production at time
t as Zt = 1 +

∑t
i=1 e

gi+
∑i

j aj , where a1, . . . , at are
normally distributed i.i.d. random variables with
mean zero and variance σ2

q , describing the noise
in the production process. E[logZ] is defined by
the (multiple) integral over ai

E(logZ) =

∫ ∞
−∞

logZ
t∏
i=1

dai√
2πσ2

q

exp
[
− a2i

2σ2
q

]
=

∫ ∞
−∞

eS({ai})
t∏
i=1

dai√
2πσ2

q

(28)

with S({ai}) = log(logZ) −
∑t

i=1
a2i
2σ2

q
, which we

will calculate by the saddle point method assum-
ing σ2

q � 1.
The saddle point is defined by the system of

equations ∂iS({a∗i }) = 0, ∂i = ∂/∂ai , i = 1 · · · t
for which we can write

S({ai}) = S({a∗i }) +
∑
ij

(ai − a∗i )(aj − a∗j)Gij

+O({(ai − a∗i )3}) (29)

where a∗i is the solution of the saddle point
equations and Gij = 1

2
∂i∂jS({ai})|ai=a∗i . In the

saddle point approximation we restrict ourselves
to quadratic terms in the expansion (29) which
makes the integral (28) Gaussian. Then we ob-
tain

E(logZ) = (detG)−1/2
eS({a

∗
i })

(2σ2
q )
t/2

(30)
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The saddle point equation leads to
∂n

(
log(logZ)− a2n

2σ2
q

)
= 0, which can be written

as

ai = σ2
q

∂iZ

Z logZ
= a∗i +O(σ4

q )

a∗i = σ2
q

∂iZ

Z logZ

∣∣∣∣∣
ai=0

(31)

Substituting this a∗i into the eS({a∗i }) term in (30)
we obtain after some algebra

eS({a
∗
i }) =

(
logZ +

σ2
q

2

∑t
i=1 (∂iZ)2

Z2 logZ

)∣∣∣∣∣
ai=0

+O(σ4
q )

(32)
The calculation of Gij as a second derivative gives

Gi,j =
1

2σ2
q

(
δi,j + σ2

q · (33)

(
(1 + logZ)∂iZ∂jZ

Z2 log2 Z
− ∂i∂jZ

Z logZ

) ∣∣∣∣∣
ai=0

)
+O(σ2

q ),

which leads to

(2σ2
q )
−t/2(detG)−1/2 = 1 +

σ2
q

2

(∑t
i=1 ∂

2
i Z

Z logZ
−
∑t

i=1(∂iZ)2(1 + logZ)

Z2 log2 Z

)∣∣∣∣
ai=0

+O(σ4
q ). (34)

Here we used the formula detG = exp(tr logG)
and an easy expansion of logG over σ2

q . Now
putting formulas (32) and (34) into (30) we ob-
tain

E(logZ) = logZ|ai=0 +

σ2
q

2

t∑
i=1

(
∂2i Z

Z
− (∂iZ)2

Z2

) ∣∣∣∣∣
ai=0

+O(σ4
q )(35)

The calculation of Z and its derivatives at ai = 0
is straightforward. If g > 0, for large t it gives the
very simple formula

E(logZ(t))|t→∞ = g(t+ 1)− log (eg − 1)

+
σ2
q

4 sinh(g)
+O(σ4

q ) (36)

With the same procedure as for (28-36) we
calculate the expectation value of E(log2 Z),
E(logZ(t) logZ(t+ 1))−E(logZ(t))E(logZ(t+
1)) which leads to similar formulas as (31-35), but
with different coefficients. The result for g > 0
and t→∞ reads

Var(logZ(t)) = E(log2 Z)− E(logZ)2

= σ2
q

(
2eg + 1

1− e2g
+ t

)
+O(σ4

q ) (37)

and

Var(∆ logZ) = E((logZ(t+ 1)− logZ(t))2)

−(E(logZ(t+ 1)− logZ(t)))2

= σ2
q tanh

(g
2

)
+O(σ4

q ). (38)
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