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THE DYNAMICS OF INEQUALITY

BY XAVIER GABAIX, JEAN-MICHEL LASRY,
PIERRE-LOUIS LIONS, AND BENJAMIN MOLL

APPENDIX G WITH ZHAONAN QU1

The past forty years have seen a rapid rise in top income inequality in the United
States. While there is a large number of existing theories of the Pareto tail of the long-
run income distributions, almost none of these address the fast rise in top inequality
observed in the data. We show that standard theories, which build on a random growth
mechanism, generate transition dynamics that are too slow relative to those observed
in the data. We then suggest two parsimonious deviations from the canonical model
that can explain such changes: “scale dependence” that may arise from changes in
skill prices, and “type dependence,” that is, the presence of some “high-growth types.”
These deviations are consistent with theories in which the increase in top income in-
equality is driven by the rise of “superstar” entrepreneurs or managers.

KEYWORDS: Inequality, superstars, Pareto distribution, speed of transition, operator
methods, spectral methods.

1. INTRODUCTION

THE PAST FORTY YEARS have seen a rapid rise in top income inequality in the
United States (Piketty and Saez (2003), Atkinson, Piketty, and Saez (2011)).2
Since Pareto (1896), it has been well known that the upper tail of the income
distribution follows a power law, or equivalently, that top inequality is “frac-
tal,” and the rise in top income inequality has coincided with a “fattening” of
the right tail of the income distribution. That is, the “super rich” have pulled
ahead relative to the rich. This rise in top inequality requires an understand-
ing of the forces that have led to a fatter Pareto tail. There is also an ongoing
debate about the dynamics of top wealth inequality.3 To the extent that wealth
inequality has also increased, we similarly need to understand the dynamics of
its Pareto tail.

1We thank the editor and referees for many constructive suggestions, Fernando Alvarez,
Roland Bénabou, Jess Benhabib, Fatih Guvenen, Chad Jones, Greg Kaplan, Erzo Luttmer, Woj-
ciech Kopczuk, Makoto Nirei, Ezra Oberfield, Jonathan Parker, Jesse Perla, John Shea, Joe Sulli-
van, and Gabriel Zucman for their insights, and seminar participants at UQAM, Queen’s Univer-
sity, Cornell, the Chicago Fed, Princeton, the University of Maryland, the University of Chicago,
the 2015 NBER Summer Institute on Income Distribution and Macroeconomics, the NBER EFG
meeting, and 2015 SAET conference for useful comments, and Moll thanks the Kauffman Foun-
dation for financial support. We also thank Joseph Abadi, Cristian Alonso, Joshua Bernstein,
Nik Engbom, Monty Essid, Mildred Hager, Zhaonan Qu, and Jason Ravit for excellent research
assistance.

2There are some uncertainties about the precise quantitative increase in top income inequality
which depends on the precise income measure and data series being used. We discuss these issues
in Section 2.

3See, for example, Piketty (2014), Saez and Zucman (2016), Bricker, Henriques, Krimmel, and
Sabelhaus (2015), and Kopczuk (2015).
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What explains the observed rapid rise in top inequality is an open question.
While there is a large number of existing theories of the Pareto tails of the in-
come and wealth distributions at a point in time, almost none of these address
the fast rise in top inequality observed in the data, or any fast change for that
matter.

The main contributions of this paper are: first, to show that the most com-
mon framework (a simple Gibrat’s law for income dynamics) cannot explain
rapid changes in tail inequality, and second, to suggest parsimonious deviations
from the basic model that can explain such changes. Our analytical results bear
on a large class of economic theories of top inequality, so that our results shed
light on the ultimate drivers of the rise in top inequality observed in the data.

The first result of our paper is negative: standard random growth models,
like those considered in much of the existing literature, feature extremely slow
transition dynamics and cannot explain the rapid changes that arise empiri-
cally. To address this issue, we consider the following thought experiment: ini-
tially at time zero, the economy is in a steady state with a stationary distribu-
tion that has a Pareto tail. At time zero, there is a change in the underlying
economic environment that leads to higher top inequality in the long run. The
question is: what can we say about the speed of this transition? Will this in-
crease in inequality come about quickly or take a long time? We present two
answers to this question. First, we derive an analytic formula for a measure
of the “average” speed of convergence throughout the distribution. We argue
that, when calibrated to be consistent with microeconomic evidence, the im-
plied half-life is too high to explain the observed rapid rise in top income in-
equality. Second, we derive a measure of the speed of convergence for the part
of the distribution we are most interested in, namely, its upper tail. We argue
that, in standard theories, transitions are even slower in the tail and, addition-
ally, that our low measure of the average speed of convergence overestimates
the speed of convergence in the upper tail. We also show that allowing for
jumps in the income process, while useful for descriptively matching micro-
level data, does not help with generating fast transitions.

Given this negative result, we are confronted with a puzzle: what, then, ex-
plains the observed rise in top income inequality? We develop an “augmented
random growth model” that features two parsimonious departures from the
canonical model that do generate fast transitions. Both departures are devia-
tions from Gibrat’s law, the assumption that the distribution of income growth
rates is independent of the income level. The first departure is type dependence
of the growth rate distribution and, in particular, the presence of some “high-
growth types.”4 For instance, some highly skilled entrepreneurs or managers

4Guvenen (2007) argued that heterogeneity in mean growth rates is an important feature of the
data on income dynamics. Luttmer (2011) studied a similar framework applied to firm dynamics
and argued that persistent heterogeneity in mean firm growth rates is needed to account for the
relatively young age of very large firms at a given point in time (a statement about the stationary
distribution rather than transition dynamics as in our paper).
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may experience much higher average earnings growth rates than other individ-
uals over short to medium horizons. We argue analytically and quantitatively
that this first departure can explain the observed fast rise in income inequality.
The second departure consists of scale dependence of the growth rate distribu-
tion which arises from shocks that disproportionately affect high incomes, for
example, changing skill prices in assignment models.5 Scale dependence can
generate infinitely fast transitions in inequality.

To obtain our analytic formulas for the speed of convergence, we employ
tools from ergodic theory and the theory of partial differential equations. Our
measure of the average speed of convergence is the first nontrivial eigenvalue
or “spectral gap” of the differential operator governing the stochastic process
for income. One of the main contributions of this paper is to derive an ana-
lytic formula for this first nontrivial eigenvalue (i.e., the second eigenvalue) for
a large variety of random growth processes.6 We obtain our measure of the
speed of convergence in the tail of the distribution by making use of the fact
that the solution to the Kolmogorov Forward equation for random growth pro-
cesses can be characterized tightly by calculating the Laplace transform of this
equation. Our clean results, which a discrete-time analysis would be unable to
deliver, constitute an example of the usefulness of continuous-time methods in
economics.

A large theoretical literature builds on random growth processes to theo-
rize about the upper tails of income and wealth distributions. Early theories of
the income distribution include Champernowne (1953) and Simon (1955), with
more recent contributions by Nirei (2009), Toda and Walsh (2015), Kim (2015),
Jones and Kim (2014), and Luttmer (2015). Similarly, random growth theories
of the wealth distribution include Wold and Whittle (1957) and, more recently,
Benhabib, Bisin, and Zhu (2011, 2015, 2016), Jones (2015), and Acemoglu and
Robinson (2015). All of these papers focus on the income or wealth distribu-
tion at a given point in time by studying stationary distributions, and none of
them analyze transition dynamics. Aoki and Nirei (2015) are a notable excep-
tion; they examined the dynamics of the income distribution and asked whether
tax changes can account for the rise in top income inequality observed in the
United States. Our paper differs from theirs in that we obtain a number of an-
alytic results providing a tight characterization of transition dynamics in ran-
dom growth models, whereas their analysis of transition dynamics is purely nu-
merical. Some of our results on slow convergence were anticipated in Luttmer
(2012), who studied an economy with a power law firm size distribution and
established the slow speed of convergence of aggregates like the aggregate

5Technically, shocks that generate scale dependence affect log income multiplicatively, rather
than additively, as in the usual random growth model.

6See Hansen and Scheinkman (2009) for a related application of operator methods in eco-
nomics.
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capital stock.7 In contrast, our methods allow us to study the speed of con-
vergence of the entire cross-sectional distribution with quite general stochastic
processes, thereby making them applicable to the study of the dynamics of in-
equality.

Our finding that type dependence delivers fast dynamics of top inequality is
also related to Guvenen (2007), who has argued that an income process with
heterogeneous income profiles provides a better fit to the micro data than a
model in which all individuals face the same income profile. In our model
variant with multiple “growth types,” we also allow for heterogeneity in the
standard deviation of income innovations in different regimes which is akin to
the mixture specification advocated by Guvenen, Karahan, Ozkan, and Song
(2015). One key difference between our model with multiple growth types and
the standard random growth model is that, in the standard model, the key de-
terminant for an individual’s place in the income distribution is her age. In
contrast, in a model with type dependence, another important determinant is
the individual’s growth type which may represent her occupation or her talent
as an entrepreneur. This is consistent with salient patterns of the tail of the in-
come distribution in the United States (Guvenen, Kaplan, and Song (2014)).8

One of the most ubiquitous regularities in economics and finance is that the
empirical distribution of many variables is well approximated by a power law.
For this reason, theories of random growth are an integral part of many differ-
ent strands of the literature beside those studying the distributions of income
and wealth.9 For example, they have been used to study the distribution of city
sizes (Gabaix (1999)) and firm sizes (Luttmer (2007)), the shape of the pro-
duction function (Jones (2005)), and in many other contexts (see the review by
Gabaix (2009)). The tools and results presented in this paper should therefore
also prove useful in other applications.10

The paper is organized as follows. Section 2 states the main motivating
facts for our analysis, and Section 3 reviews random growth theories of the

7See also footnote 37 regarding Proposition 3.
8Luttmer (2011) made a similar observation about the relationship between a firm’s age and

its place in the firm size distribution. As Luttmer put it succinctly: “Gibrat implies 750-year-old
firms.”

9Our focus is on the dynamics of income inequality. However, our criticism and suggested
fixes apply without change to random growth models of the wealth distribution. In Appendix E
(Gabaix, Lasry, Lions, and Moll (2016)), we work out in detail the implications of our theoretical
results for the dynamics of wealth inequality.

10Other useful tools are in the following works. Bouchaud and Mézard (2000) calculated the
decay rate of the autocorrelation of an individual’s wealth, and found that it depends on the tail
exponent (when this tail exponent is smaller than 2 so that the variance ceases to exist, the expres-
sion for this decay rate coincides with the speed of convergence in a special case of our model).
Saichev, Malevergne, and Sornette (2009) and Malevergne, Saichev, and Sornette (2013) calcu-
lated a number of probability densities and hazard rates at finite times. Those works study the
dynamics of individuals in an economy already at the steady state, while we study the entire econ-
omy off its steady state, but transitioning towards it.
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income distribution at a point in time. In Section 4, we present our main neg-
ative results on the slow transitions generated by such models and we explore
their empirical implications for the dynamics of income inequality. Section 5
presents two theoretical mechanisms for generating fast transitions, and shows
that these have the potential to account for the fast transitions observed in the
data. Section 6 concludes. Additional information may be found in the Supple-
mental Material (Appendices C–I; Gabaix et al. (2016)).

2. MOTIVATING FACTS

In this section, we briefly review some facts regarding the evolution of top
income inequality in the United States. We return to these in Sections 4 and 5
when comparing various random growth models and their ability to generate
the trends observed in the data.

Panel (a) of Figure 1 displays the evolution of a measure of the top 1%
income share. It shows the large and rapid increase in the top 1% income share
that has been extensively documented by Piketty and Saez (2003), Atkinson,
Piketty, and Saez (2011), and others. The precise amount by which the top 1%
income share has increased depends on the precise income measure and data
series being used, with alternative measures showing a more modest increase,
a point we explore in Appendix B.11 However, all commonly used data series

FIGURE 1.—Evolution of top 1% income share and “fractal inequality” in U.S.

11The series used in Figure 1 is from the “World Top Incomes Database.” Here, we plot total
income (salaries plus business income plus capital income) excluding capital gains. The series
display a similar trend when we include capital gains or focus on salaries only (though the levels
are different). Note also that a significant part of the increase in top inequality is concentrated in
1987 and 1988 just after the Tax Reform Act of 1986 which sharply reduced top marginal income
tax rates. Part of this increase may therefore be due to changes in tax reporting and realizations
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do show a substantive increase in the top 1% income share of at least five
percentage points between the 1970s and today.

As already noted, the upper tail of the income distribution follows a power
law, or equivalently, top inequality is fractal in nature. For an exact power law,
the top 0�1% are X times richer on average than the top 1% who are, in turn,
X times richer than the top 10%, whereX is a fixed number. Equivalently, the
top 0�1% income share is a fraction Y of the top 1% income share, which, in
turn, is a fraction Y of the top 10% income share, and so on. We now explore
this fractal pattern in the data using a strategy borrowed from Jones and Kim
(2014). Panel (b) of Figure 1 plots the income share of the top 0�1% relative to
that of the top 1% and the income share of the top 1% relative to that of the
top 10%. As expected, the two lines track each other relatively closely. More
importantly, there is an upward trend in both lines. That is, there has been a
relative increase in top income shares. As we explain in more detail below, this
increase in “fractal inequality” implies equivalently a “fattening” of the Pareto
tail of the income distribution.12

There are two main takeaways from this section. First, top income shares
have increased substantially since the late 1970s. Second, the Pareto tail of the
income distribution has become fatter over time.

3. RANDOM GROWTH THEORIES OF INCOME INEQUALITY

Our starting point is the existing theories that can explain top income in-
equality at a point in time, meaning that they can generate stationary income
distributions that have Pareto tails. Many of these share the same basic mech-
anism for generating power laws, namely, proportional random growth. In this
section, we present a relatively general random growth model of income dy-
namics and characterize its stationary distribution. This framework will also be
the focus of our analysis of transition dynamics in the next section.

3.1. Income Dynamics

Time is continuous, and there is a continuum of workers indexed by i. Work-
ers are heterogeneous in their income or wage wit . For brevity, we here only
spell out the reduced-form dynamics of income. We discuss possible micro-
foundations below and provide one example in Appendix C. We will later find
it useful to conduct much of the analysis in terms of the logarithm of income,
xit = logwit , whose dynamics are

(1) dxit = μdt + σ dZit + git dNit�

rather than actual changes in inequality. See Appendix B for a more detailed discussion of these
points.

12As for the levels of the shares, it should be noted that there is again some uncertainty re-
garding the precise quantitative amount by which these relative shares have increased. See again
Appendix B.
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where Zit is a standard Brownian motion and where Nit is a jump process with
intensity φ.13 The innovations git are drawn from an exogenous distribution f .
The distribution f can have arbitrary support and it may be either thin-tailed
(e.g., a normal distribution) or fat-tailed.

All theories of top inequality add some “stabilizing force” to the pure ran-
dom growth process (1) to ensure the existence of a stationary distribution
(Gabaix (2009)). In the absence of such a stabilizing force, the cross-sectional
variance of xit grows without bound. We consider two possibilities. First, work-
ers may die (retire) at rate δ, in which case they are replaced by a young worker
with wage xit drawn from a distribution ψ(x). Second, there may be a lower
bound x on income. The simplest possibility is that this lower bound takes the
form of a reflecting barrier. More generally, we consider exit at x with entry
(i.e., reinjection) at a point x > x drawn from a distribution ρ(x). For instance,
Luttmer (2007) analyzed the case of a “return process” where the reinjection
occurs at a point x∗, which is the special case in which ρ is a Dirac distribution
at x∗, ρ(x) = δx∗(x).14 A natural interpretation for a lower bound on income
is that workers exit the labor force if their income falls below some thresh-
old. For simplicity, we normalize x= 0 throughout the remainder of the paper,
that is, the corresponding threshold for income is w= 1. When the process (1)
features jumps φ �= 0, we only consider death as a stabilizing force.15

The income dynamics (1) can be microfounded in a variety of ways. Ap-
pendix C provides one such microfoundation: workers optimally invest to ac-
cumulate human capital, a process that also involves some luck. But other mi-
crofoundations are possible as well and a large number of theories of the upper
tail of the income distribution ends up with a similar reduced form.16

Because the process (1) allows for jumps, it is considerably more general
than the more commonly used specification in which income innovations are
log-normally distributed (a geometric Brownian motion for income). Recent
research suggests that the standard specification is a quite imperfect descrip-
tion of the data. For instance, Guvenen et al. (2015) documented, using ad-
ministrative data, that earnings innovations are very fat-tailed and much more
so than a normally distributed random variable. In our continuous-time setup,
the most natural way of generating such kurtosis is to allow for jumps.17 At the

13That is, the innovations dZit are normally distributed: approximately, dZit � εit
√
dt, εit ∼

N (0�1), for a small dt. Similarly, there is a jump in (t−dt� t] (i.e., dNit = 1) with probability φdt
and no jump (i.e., dNit = 0) with probability 1 −φdt; if there is a jump, it is a random g̃.

14Luttmer (2007) showed that the stationary distribution of the process with exit and entry
converges to one associated with a reflecting barrier at x as x∗ ↓ x.

15For instance, it is messy to define a reflecting barrier in the presence of jumps.
16See, for example, Champernowne (1953), Simon (1955), Nirei (2009), Toda and Walsh

(2015), Aoki and Nirei (2015), Kim (2015), Jones and Kim (2014), and Luttmer (2015) for models
with similar reduced forms. Some of these are derived from individual optimization, but others
are not.

17It is not surprising that income innovations will be leptokurtic if the distribution from which
jumps are drawn features kurtosis itself. Interestingly, this is not necessary for income innovations
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same time, the process (1) makes the strong assumption that the parameters
μ and σ as well as the distribution f do not depend on the level of income,
a strict form of Gibrat’s law. Furthermore, the coefficients are assumed to be
constant over time. We show below that these assumptions can be relaxed con-
siderably to the case when the drift and diffusion are arbitrary functions μ(x� t)
and σ(x� t) of the income level that converge to constants for large x. This sit-
uation will arise in many applications where the drift and diffusion are the out-
comes of individual optimization problems that do not permit a closed-form
solution (i.e., that are more general than the simple optimization problem in
Appendix C) and when these optimizing individuals face time-varying prices
during transition dynamics.

A large literature estimates reduced-form labor income processes similar to
(1) using panel data.18 In particular, (1) is the special case of the widespread
“permanent-transitory model” of income dynamics, but with only a permanent
component. As a result, good estimates are available for its parameter values.
The process could easily be extended to feature a transitory component, for
example, by introducing jumps that are distributed i.i.d. over time and across
individuals.

3.2. Stationary Income Distribution

The properties of the stationary distribution of the process (1) for the loga-
rithm of income xit = logwit are well understood. In particular, under certain
parameter restrictions, this stationary distribution has a Pareto tail19

P(wit > w)∼ Cw−ζ�

where C is a constant and ζ > 0 is a simple function of the parameters μ, σ
and the distribution of jumps f (see, e.g., Gabaix (2009)). Equivalently, the
distribution of log income has an exponential tail, P(xit > x)∼ Ce−ζx. Without
jumps φ= 0, ζ is the positive root of20

(2) 0 = σ2

2
ζ2 + ζμ− δ�

which equals

(3) ζ = −μ+ √
μ2 + 2σ2δ

σ2 �

to be leptokurtic: even normally distributed jumps that arrive with a Poisson arrival rate can
generate kurtosis in data observed at discrete time intervals. The same logic is used in the theory
of “subordinated stochastic processes.”

18See, for example, MaCurdy (1982), Heathcote, Perri, and Violante (2010), and Meghir and
Pistaferri (2011).

19Here and elsewhere, “f (x)∼ g(x)” for two functions f and g means limx→∞ f (x)/g(x)= 1.
20The proof is standard: we plug p(x)= Ce−ζx into (5), which leads to (2).
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The constant ζ is called the “power law exponent,” with a smaller ζ corre-
sponding to a fatter tail. We find it useful to refer to the inverse of the power
law exponent η= 1/ζ as “top inequality.” Intuitively, tail inequality is increas-
ing in μ and σ and decreasing in the death rate δ. In Appendix D, we provide
a complete characterization of the stationary distributions for different “sta-
bilizing forces.” In particular, we spell out the assumptions under which there
exists a unique stationary distribution. For the remainder of the paper, we as-
sume that these assumptions are satisfied.21

To make the connection to the empirical evidence in the Introduction, note
that if the distribution of w has a Pareto tail above the pth percentile, then
the share of the top p/10th percentile relative to that of the pth percentile is
given by S(p/10)

S(p)
= 10η−1. There is, therefore, a one-to-one mapping between the

relative income shares in panel (b) of Figure 1 and the top inequality parameter
η = 1/ζ.22 Most existing contributions focus on the stationary distribution of
the process (1) and completely ignore the corresponding transition dynamics.
It is unclear whether these theories can explain the observed dynamics of the
tail parameter η. This is what we turn to next.

4. THE BASELINE RANDOM GROWTH MODEL GENERATES SLOW TRANSITIONS

Changes in the parameters of the income process (1) lead to changes in the
fatness of the right tail of its stationary distribution. For example, an increase
in the innovation variance σ2 leads to an increase in stationary tail inequality
η in (3). But this leaves unanswered the question whether this increase in in-
equality will come about quickly or will take a long time to manifest itself. The
main message of this section is that the standard random growth model (1)
gives rise to very slow transition dynamics.

Throughout this section, we conduct the following thought experiment. Ini-
tially, at time t = 0, the economy is in a Pareto steady state corresponding
to some initial parameters μ0, σ2

0 and so on. At time t = 0, a parameter
changes; for example, the innovation variance σ2 may increase. Asymptotically
as t → ∞, the distribution converges to its new stationary distribution. The
question is: what can we say about the speed of this transition? We present two
sets of results corresponding to different notions of the speed of convergence.
The first notion measures an “average” speed of convergence throughout the

21Note that these assumptions may not be satisfied in some economic applications of interest.
In particular, the presence of prices and other endogenous equilibrium objects implies that it is
theoretically possible for there to exist multiple stationary distributions. For instance, in Luttmer
(2007), the critical points for exit and reinjection x and x∗ are themselves functions of the dis-
tribution rather than exogenously given parameters. There may therefore be multiple stationary
distributions (though, as Luttmer showed for his setup, compactly supported initial distributions
converge to one particular, unique stationary distribution).

22In particular, η= 1+ log10
S(p/10)
S(p)

. See Jones and Kim (2014) and Jones (2015) for two papers
that use this fact extensively.
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distribution. The second notion captures differential speeds of convergence
across the distribution, allowing us in particular to put the spotlight on its up-
per tail.

Throughout the remainder of the paper, we denote the cross-sectional distri-
bution of the logarithm of income x at time t by p(x� t), the initial distribution
by p0(x), and the stationary distribution by p∞(x). In order to talk about con-
vergence, we also need a measure of distance between the distribution at time
t and the stationary distribution. Throughout the paper, we use the L1-norm
or total variation norm ‖ · ‖ defined as

(4)
∥∥p(x� t)−p∞(x)

∥∥ :=
∫ ∞

−∞

∣∣p(x� t)−p∞(x)
∣∣dx�

The cross-sectional distribution p(x� t) satisfies a Kolmogorov Forward equa-
tion. Without jumps (φ= 0), this equation is

(5) pt = −μpx + σ2

2
pxx − δp+ δψ�

with initial condition p(x�0) = p0(x), where we use the compact notation
pt := ∂p(x�t)

∂t
, px := ∂p(x�t)

∂x
, pxx := ∂2p(x�t)

∂x2 . The first two terms on the right-hand
side capture the evolution of x due to diffusion with drift μ and variance σ2.
The third term captures death and, hence, an outflow of individuals at rate δ,
and the fourth term captures birth, namely, that every “dying” individual is
replaced with a newborn drawn from the distribution ψ(x).

When there is a reflecting barrier, p must additionally satisfy the boundary
condition23

(6) 0 = −μp+ σ2

2
px� at x= 0� for all t�

When there is exit at x = 0 with reinjection at points strictly above x = 0,
that is, ρ(0)= 0, the boundary condition is

(7) p(0� t)= 0 for all t�

and an additional term γ(t)ρ(x) is added to the right-hand side of (5), with
γ(t) = σ2

2 px(0� t): pt = −μpx + σ2

2 pxx − δp + δψ + γρ. This term captures
reinjection after exit: a density γ(t) = σ2

2 px(0� t) of agents touch the barrier
at time t−, and they are reinjected at the random location drawn from the
distribution ρ(x).24

23This boundary condition comes from integrating (5) from x= 0 to ∞.
24To see why the rate at which people exit is given by γ(t) = σ2

2 px(0� t), integrate the Kol-
mogorov equation (5) from x = 0 to ∞, which gives 0 = μp(0� t) − σ2

2 px(0� t) + γ (using∫ ∞
0 ρ(x)dx= 1). Given p(0� t)= 0, we obtain γ(t)= σ2

2 px(0� t).
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When there are jumps, the Kolmogorov Forward equation (5) becomes

(8) pt = −μpx + σ2

2
pxx − δp+ δψ+φE[

p(x− g)−p(x)]�
Relative to (5), the new term is the expectation E[p(x − g) − p(x)], which
is taken over the random jump g and is multiplied by φ, the arrival rate of
jumps.25

It is often convenient to write these partial differential equations in terms of
a differential operator. For instance, (5) is

(9) pt =A∗p+ δψ� A∗p := −μpx + σ2

2
pxx − δp�

This formulation is quite flexible and can be extended in a number of ways, in
particular to the case with jumps or with exit and reinjection. What is critical for
all our results is that the differential operator A∗ in the Kolmogorov Forward
equation (9) is linear. Note that “linearity” here refers to the operator and not
the coefficients, and in particular the operator will still be linear in the case with
income- and time-dependent coefficients μ(x� t) and σ(x� t) that we consider
below.26 Our apparatus can therefore potentially be applied to more general
setups where these coefficients are the outcome of an individual optimization
problem without an analytic solution.27

4.1. Average Speed of Convergence

We now state Proposition 1, one of the two main theoretical results of our
paper. For now, we assume that the process (1) does not feature jumps (φ= 0)
and do not allow for exit and reinjection. We extend the results to the case
with exit and reinjection in Proposition 2 and to jumps in Proposition 3. As
mentioned above, we assume that the process (1) satisfies the assumptions in
Appendix D that guarantee the existence of a unique stationary distribution
p∞(x). We additionally make the following assumption.

25A jump of g at x − g will transport p(x − g) individuals to location x, hence the term
φE[p(x − g)]. Jumps at x make φp(x) people leave location x, hence the term −φp(x). The
net effect is φE[p(x− g)−p(x)].

26An operator A∗ is said to be “linear” if, for any two functions p and q in its domain, A∗(p+
q)= A∗p+ A∗q. In the case with income- and time-dependent coefficients, the operator in the
Kolmogorov Forward equation (9) generalizes to A∗(t)p := −(μ(x� t)p)x + ( σ2(x�t)

2 p)xx − δp. It
easy to see that this operator still satisfies the condition defining linearity.

27Most models of distributional dynamics give rise to a linear operator. However, nonlinear
differential operators can arise in models of knowledge diffusion (e.g., Perla and Tonetti (2014),
Lucas and Moll (2014), Benhabib, Perla, and Tonetti (2016)).
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ASSUMPTION 1: The initial distribution p0(x) satisfies
∫ ∞

−∞
(p0(x))

2

e−ζ̄x dx < ∞,
where ζ̄ := −2μ

σ2 ≤ ζ, and μ, σ are the parameters of the new steady-state process.

Note that Assumption 1 is a relatively weak restriction. For instance, assume
that p0 has a Pareto tail p0(x) ∼ c0e

−ζ0x for large x. Then Assumption 1 is
equivalent to ζ0 > ζ̄/2, and a sufficient condition is ζ0 > ζ/2,28 or in terms of
top inequality η= 1/ζ: η0 < 2η. That is, Assumption 1 rules out cases in which
top inequality in the initial steady state is more than twice as large as that in the
new steady state. In particular, it is satisfied in all cases where top inequality in
the new steady state is larger than that in the initial steady state, η0 < η, the
case we are interested in.29

PROPOSITION 1—Average Speed of Convergence: Consider the income pro-
cess (1) with death and/or a reflecting barrier as a stabilizing force but without
jumps (φ= 0). The cross-sectional distribution p(x� t) converges to its stationary
distribution p∞(x) in the total variation norm for any initial distribution p0(x).
The rate of convergence

(10) λ := − lim
t→∞

1
t

log
∥∥p(x� t)−p∞(x)

∥∥
depends on whether there is a reflecting barrier at x= 0. Without a reflecting bar-
rier,

(11) λ= δ�
With a reflecting barrier, under Assumption 1 and for generic initial conditions,

(12) λ= μ2

2σ2 1{μ<0} + δ�

where 1{·} is the indicator function.

The interpretation of the rate of convergence (10) is that, asymptotically as
t → ∞, the distribution converges exponentially at rate λ: ‖p(x� t)−p∞(x)‖ ∼
ke−λt . We shall see that Proposition 1 implies that the traditional canonical
model delivers convergence that is far too slow: λ is too low compared to em-
pirical estimates.

The intuition for formulas (11) and (12) is as follows. Without a reflecting
barrier, the speed is simply given by the death intensity δ. This is intuitive:

28Indeed, if δ= 0, ζ = ζ̄. If δ > 0, call P(r)= −δ+μr + σ2

2 r
2, so that P(ζ)= 0. Given P(ζ̄)=

−δ < 0, we have ζ̄ < ζ.
29Proposition 1 can also be extended to the case where p0 does not decay fast enough, that is,

if η0 > 2η. In particular, one can bound the speed of convergence, which becomes lower.
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the higher δ is, the more churning there is in the cross-sectional distribution
and the faster the distribution settles down to its invariant distribution. In the
extreme case where δ→ ∞, the distribution jumps to its steady state imme-
diately. Next, consider the case with a reflecting barrier, μ < 0, and no death,
δ = 0. From (3), stationary tail inequality for this case is η = 1/ζ = −σ2

2μ and
therefore the speed of convergence can also be written as

(13) λ= σ2

8η2 �

This expression has intuitive comparative statics. It states that the transition is
faster the higher is the standard deviation of growth rates σ and the lower is tail
inequality η; that is, high inequality goes hand in hand with slow transitions.30

The interpretation of the formula with a reflecting barrier and δ > 0 is similar.
In Section 4.3, we show that when the parameters μ, σ , and δ are calibrated

to be consistent with the micro data and the observed inequality at a point in
time, the implied speed of convergence is an order of magnitude too low to
explain the observed increase in inequality in the data.

As mentioned above, the process (1) is a bit restrictive because it assumes
that Gibrat’s law holds everywhere in the state space. In fact, it is possible to
relax this assumption and still obtain an upper bound on the speed of conver-
gence. To this end, consider the more general process

(14) dxit = μ(xit� t) dt + σ(xit� t) dZit�
where the growth and standard deviation of income depend on both the in-
come state itself and time. As already mentioned, state dependence often
arises in applications where the drift and diffusion are the outcomes of individ-
ual optimization problems that do not permit a closed-form solution. Similarly,
time dependence is natural when these individuals face time-varying prices
during transitions to a stationary equilibrium. Here μ(x� t) and σ(x� t) are
quite arbitrary functions that satisfy one condition: the process converges to
a strict random growth process as income x becomes arbitrarily large. More
precisely, we make the following assumptions on μ(x� t) and σ(x� t).31

ASSUMPTION 2: The coefficients of the process (14) satisfy μ(x� t) → μ̃(x)
and σ(x� t)→ σ̃(x) uniformly in x, as t → ∞, for some time-independent coeffi-
cients μ̃(x) and σ̃(x), which in turn satisfy μ̃(x)→ μ̄ and σ̃(x)→ σ̄ as x→ ∞.

30Equation (13) shows that high inequality goes hand in hand with slow transitions for the
case of an exact Pareto income distribution. This comparative static need not hold in the case of
income- and time-dependent coefficients in which the distribution only has an asymptotic Pareto
tail. However, Proposition 2 still establishes an upper bound for the speed of convergence in this
case.

31In addition, we assume that the functions μ and σ satisfy simple sufficient conditions ensur-
ing the existence and uniqueness of a steady state. See Appendix G.1.
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Moreover, σ2(x� t) ≥ γσ̄2 for all x, t and some γ > 0, and σx(0� t)→ σ̃ ′(0) as
t → ∞.

Under these assumptions, we obtain the following extension of Proposition 1
to the income- and time-dependent process (14). Furthermore, we now allow
for exit with reinjection in addition to a reflecting barrier.

PROPOSITION 2—Upper Bound on Average Speed of Convergence With
General Process (14): Consider the income process (14) satisfying Assumption 2
and with a stabilizing force. The cross-sectional distribution p(x� t) converges to
its stationary distribution p∞(x) in the total variation norm. The rate of conver-
gence λ := − limt→∞ 1

t
log‖p(x� t) − p∞(x)‖ is at most as large as that with a

strict random growth process (1) from Proposition 1. Without a lower bound on
income, λ ≤ δ. With a lower bound on income (either a reflecting barrier or exit
with reinjection), λ≤ 1

2
μ̄2

σ̄2 1{μ̄<0} + δ.

As most readers will be more interested in the message of Propositions
1 and 2 than their proofs, we only sketch here the intuition for the proofs.
The proof of Proposition 1 without a reflecting barrier analyzes directly the
L1-norm (4) by means of a differential equation for |p(x� t) − p∞(x)|. The
rough idea of the proof of Proposition 1 with a lower bound is as follows. The
entire dynamics of the process for xit are summarized by the operator A∗ de-
fined in (9). This operator is the appropriate generalization of a transition ma-
trix for a finite-state process to processes with a continuum of states such as (1),
and it can be analyzed in an exactly analogous way. In particular, the critical
property of A∗ governing the speed of convergence of p is its largest nontrivial
eigenvalue, that is, the second eigenvalue. The intuition why it is the second
eigenvalue that matters for the speed of convergence is exactly the same as for
a finite-state process: the first (principal) eigenvalue of the transition matrix is
zero and corresponds to the stationary distribution p∞; instead, it is the second
eigenvalue that governs the speed of convergence to this stationary distribution
because the loadings of the initial distribution on all other eigenvectors decay
more quickly. See Appendix F.1 for a detailed explanation.32 The key contri-
bution of Proposition 1 and the main step of the proof is then to obtain an
explicit formula for the second eigenvalue of A∗ in the form of (12).33 The

32Note that the largest nontrivial eigenvalue λ is the relevant speed of convergence for generic
initial conditions p0. As we explain in more detail in Appendix F.2.1, “generic” here means that,
for any given p0, we can find an arbitrarily close p̃0 that converges at the rate λ. The logic is ex-
actly the same as in the finite-dimensional case analyzed in Appendix F.1: there could in principle
be initial conditions that are exactly orthogonal to the eigenvector corresponding to the largest
nontrivial eigenvalue. But such initial conditions are knife-edge and the second eigenvalue gov-
erns the speed of convergence for any perturbations of such initial conditions.

33Linetsky (2005) derived a related result for the special case with a reflecting barrier, μ < 0
and δ = 0. For the same case, one can also derive the formula for the speed of convergence
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proof of Proposition 2 is more involved and uses “energy methods,” that is,
techniques involving the L2-norms of various expressions (Evans (1998)).

4.2. Speed of Convergence in the Tail

In the preceding section, we characterized a measure of the average speed
of convergence across the entire distribution. The purpose of this section is to
examine the possibility that different parts of the distribution may converge at
different speeds. In particular, we show that convergence is particularly slow
in the upper tail of the distribution. That is, the formula in Proposition 1 over-
estimates the speed of convergence of parts of the distribution.

We also ask whether departing from the standard log-normal framework by
introducing jumps can help resolve the puzzle raised in the preceding section
that random growth processes cannot explain the fast rise of income inequality
observed in the data. We find that they cannot: while jumps are useful descrip-
tively for capturing certain features of the data, they do not increase the speed
of convergence of the cross-sectional income distribution.

Because we use somewhat different arguments depending on whether there
is a lower bound on income or not, we present the results for the two cases
separately.

4.2.1. Speed of Convergence in the Tail Without a Lower Bound on Income

Without a lower bound on income, the distribution p(x� t) satisfies the Kol-
mogorov Forward equation (8), which potentially allows for jumps. One can
show (see, e.g., Gabaix (2009) and Appendix D) that in this case, the station-
ary distribution has Pareto tails both as x→ ∞ and as x→ −∞:

(15) p∞(x)∼
{
e−ζ+x� x→ ∞�

e−ζ−x� x→ −∞�

with ζ− < 0< ζ+.34 Apart from the stationary distribution, the solution to the
Kolmogorov Forward equation is cumbersome.

Without a lower bound on income, the entire time path of the solution to
the Kolmogorov Forward equation can be characterized conveniently in terms
of the “Laplace transform” of p:

(16) p̂(ξ� t) :=
∫ ∞

−∞
e−ξxp(x� t)dx= E

[
e−ξxit ]�

by “brute force” from the standard formulas for reflected Brownian motion (see, e.g., Harrison
(1985)). Our results are considerably more general.

34For instance, without jumps and with rebirth at x= 0, the stationary distribution is a double
Pareto distribution p∞(x) = cmin{e−ζ−x� e−ζ+x}, where c = −ζ−ζ+/(ζ+ − ζ−) and where ζ− <
0< ζ+ are the two roots of (2).
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where ξ is a real number and xit represents the random variable (log income)
with distribution p(x� t).35 For ξ ≤ 0, the Laplace transform has the natu-
ral interpretation of the −ξth moment of the distribution of income, that is,
p̂(ξ� t) = E[w−ξ

it ], where wit = exit is income. Similarly note that, up to a mi-
nus, the Laplace transform is the moment generating function corresponding
to the distribution p(x� t), and one can therefore also calculate all moments
of log income.36 We show momentarily that we can obtain a clean analytic for-
mula for the entire time path of this object for all t. This is useful because a
complete characterization of a function’s Laplace transform is equivalent to a
complete characterization of the function itself. This is because by varying the
variable ξ, we can trace out the behavior of different parts of the distribution.
In particular, the more negative ξ is, the more we know about the distribution’s
tail behavior. In a similar vein, our analysis using Laplace transforms will allow
us to characterize tightly the behavior of a weighted version of the L1-norm
in (4):

(17)
∥∥p(x� t)−p∞(x)

∥∥
ξ
:=

∫ ∞

−∞

∣∣p(x� t)−p∞(x)
∣∣e−ξx dx�

In the special case ξ = 0, this distance measure coincides with the L1-norm
defined in (4). But by taking ξ < 0, (17) puts more weight on the behavior of the
distribution’s tail, the main focus of the current section. Note that the Laplace
transform (16) ceases to exist if ξ is too negative or too positive. To ensure that
the Laplace transform exists, we impose max{ζ0�−� ζ−} < −ξ < min{ζ0�+� ζ+},
where ζ− < 0 < ζ+ are the tail parameters of the stationary distribution (15)
and ζ0�− < 0< ζ0�+ those of the initial distribution.

We apply the Laplace transform to the Kolmogorov Forward equation (8).
For the first two terms, we use the rules p̂x = ξp̂ and p̂xx = ξ2p̂. Next consider
the term capturing jumps, which can be written as

E
[
p(x− g)−p(x)] =

∫ ∞

−∞

[
p(x− g)−p(x)]f (g)dg

= (p ∗ f )(x)−p(x)�
where ∗ is the convolution operator. Conveniently, integral transforms like the
Laplace transform are the ideal tool for handling convolutions. In particular,
the Laplace transform of a convolution of two functions is the product of the
Laplace transforms of the two functions: (̂p ∗ f )(ξ)= p̂(ξ)f̂ (ξ). Note that the

35Note that we here work with the “bilateral” or “two-sided” Laplace transform which inte-
grates over the entire real line. This is in contrast to the one-sided Laplace transform defined as∫ ∞

0 e−ξxp(x� t)dx.
36The first moment of log income can be calculated from the first derivative as − ∂

∂ξ
p̂(0� t) =∫ ∞

−∞ xp(x� t)dx= E[xit], the second moment from the second derivative, and so on.
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Laplace transform can handle arbitrary jump distributions f . Applying these
rules to (8), we obtain

p̂t(ξ� t)= −λ(ξ)p̂(ξ� t)+ δψ̂(ξ) where(18)

λ(ξ) := μξ− σ2

2
ξ2 + δ−φ(

f̂ (ξ)− 1
)
�

with initial condition p̂(ξ�0) = p̂0(ξ), the Laplace transform of p0(x), and
where ψ̂(ξ) and f̂ (ξ) are the Laplace transforms of ψ(x) and f (x). Impor-
tantly, note that for fixed ξ, (18) is a simple ordinary differential equation for
p̂ that can be solved analytically. Note that this strategy would work even if
the coefficients μ, σ , δ, and φ were arbitrary functions of time t. However, it
would not work if μ, σ , δ, and φ depended on income x.

PROPOSITION 3—Speed of Convergence in the Tail: Consider the Laplace
transform of the income distribution p̂(ξ� t) defined in (16). Its time path is

p̂(ξ� t)= p̂∞(ξ)+ (
p̂0(ξ)− p̂∞(ξ)

)
e−λ(ξ)t�(19)

λ(ξ) := ξμ− ξ2σ
2

2
+ δ−φ(

f̂ (ξ)− 1
)
�(20)

p̂∞(ξ) := δψ̂(ξ)

μξ− σ2

2
ξ2 + δ−φ(

f̂ (ξ)− 1
) �(21)

The Laplace transform of the distribution of jumps f , f̂ (ξ) = ∫ ∞
−∞ e

−ξgf (g)dg,
satisfies f̂ (0)= 1 and (if E[g] ≥ 0) f̂ (ξ) ≥ 1 for all ξ < 0. Furthermore, λ(ξ) is
also the rate of convergence of the weighted L1-norm (17):

− lim
t→∞

1
t

log
∥∥p(x� t)−p∞(x)

∥∥
ξ
= λ(ξ)�

Consider first the formula for the speed of convergence of the weighted dis-
tance measure without jumps φ = 0. For the special case ξ = 0, we have
λ(ξ)= δ; when the weighted L1-norm places no additional weight on the be-
havior of the distribution’s tail, we recover our original result from Proposi-
tion 1, as expected. As we take ξ to be more and more negative, the weighted
norm places more and more weight on the behavior of the distribution’s upper
tail, and the corresponding speed of convergence is given by λ(ξ). Note that
for μ> 0, the speed of convergence λ(ξ) is always lower the lower ξ is, for all
ξ≤ 0. If μ< 0, the same is true for all ξ less than some critical value. The for-
mula for λ(ξ) therefore indicates that convergence is slower the more weight
we put on observations in the distribution’s tail.
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Next, consider the case with jumps φ> 0. First note that the average speed
of convergence as measured by the unweighted L1-norm is entirely unaffected
by the presence of jumps: explicitly spelling out the dependence of the speed
of convergence λ(ξ;φ) on φ, we have λ(0;φ)= δ for all φ. With ξ < 0, jumps
make the speed of convergence lower than in the absence of jumps: λ(ξ;φ)≤
λ(ξ;0), φ > 0 (since f̂ (ξ) ≥ 1 for ξ < 0). Furthermore, for ξ < 0, λ(ξ;φ) is
decreasing in φ, that is, the higher is the jump intensity, the lower is the rate
of convergence. Summarizing, if we confine attention to the average speed of
convergence ‖p(x� t)−p∞(x)‖, jumps have no effect whatsoever. If instead we
put more weight on observations in the distribution’s tail, ξ < 0, then the rate
of convergence becomes worse, not better. We conclude that jump processes,
though very useful for the purpose of capturing salient features of the data, are
not helpful in terms of providing a theory of fast transitions.

Next consider (19), which provides a closed-form solution for the evolution
of the Laplace transform or, equivalently, for the evolution of all moments of
the cross-sectional income distribution. These moments converge at the same
rate λ(ξ) as the weighted norm in (17). Hence, the closed-form solution for the
Laplace transform in (19) shows that high moments converge more slowly than
low moments. We illustrate these results graphically below. Also note that all
moments of the income distribution converge exponentially and hence mono-
tonically. Our characterization of the dynamics of these moments is anticipated
in Luttmer (2012), which contains results that are equivalent to (19) in the case
ξ= −1, that is, concerning the first moment.37

Finally, note that one can identify the Pareto tail of the distribution p from
knowledge of its Laplace transform only: the tail parameter is simply the criti-
cal value ζ > 0 such that p̂(ξ) ceases to exist for all ξ ≤ −ζ.38 This strategy is
useful because it also works in some cases in which the tail parameter cannot
be computed using standard methods, for example, with jumps φ> 0.

4.2.2. Speed of Convergence in the Tail With Reflecting Barrier

Proposition 3 can also be extended to an income process with a reflecting
barrier. The Kolmogorov Forward equation for the distribution can then no
longer be solved by means of the Laplace transform. The proof therefore uses

37Luttmer (2016) has since shown how to extend Luttmer’s (2012) characterization of the case
ξ = −1 to general ξ using Ito’s formula. In contrast to these characterizations of the distribu-
tion’s moments, our main results in Propositions 1 and 2 characterize the distribution’s distance
from its stationary distribution in terms of the L1-norm, and cover more general processes with a
lower bound, exit, and reinjection as well as income- and time-dependent coefficients. Similarly,
Proposition 3 also characterizes the weighted L1-norm (17).

38For any distribution p with a Pareto tail, that is, p(x)∼ ce−ζx x→ ∞ for constants c and ζ,
the Laplace transform (16) satisfies p̂(ξ) ∼ c

ζ+ξ as ξ ↓ −ζ. Therefore, ζ = − inf{ξ : p̂(ξ) <∞}.
The converse is also true and one can conclude whether a distribution has a Pareto tail from
a characterization of its Laplace transform alone, as well as characterize the corresponding tail
exponent. See Proposition 7 in Appendix D.2.
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a different strategy, closely related to that in Proposition 1. While this strategy
applies with a reflecting barrier, we can no longer handle jumps.

PROPOSITION 4: Consider the income process (1) without jumps φ = 0 but
with a reflecting barrier. Under Assumption 1, the rate of convergence λ(ξ) :=
− limt→∞ 1

t
log‖p(x� t)−p∞(x)‖ξ of the weighted L1-norm (17) is

(22) λ(ξ)=

⎧⎪⎪⎨⎪⎪⎩
1
2
μ2

σ2 + δ� ξ≥ μ

σ2 �

μξ− σ2

2
ξ2 + δ� ξ <

μ

σ2 �

The speed of transition λ(ξ) weakly decreases as the weight −ξ on the right tail
increases.

4.2.3. An Instructive Special Case: The Steindl Model

We briefly illustrate the result of Propositions 3 and 4 in an instructive spe-
cial case originally due to Steindl (1965) with an analytic solution for the time
path of the cross-sectional income distribution: σ = 0, μ�δ > 0, and ψ is the
Dirac delta function at x= 0. In this model, the logarithm of income xit grows
at rate μ and gets reset to xi0 = 0 at rate δ. The Steindl model has recently
also been examined by Jones (2015). The distribution p(x� t) then satisfies the
Kolmogorov Forward equation (5) with σ = 0 for x > 0. The corresponding
stationary distribution is a Pareto distribution p∞(x) = ζe−ζx with ζ = δ

μ
. For

concreteness, consider an economy starting in a steady state with some growth
rate μ0 (and death rate δ0). At t = 0, the growth rate changes permanently to
μ>μ0 (and death rate δ). Then, the new steady-state distribution is more fat-
tailed, ζ < ζ0. The following lemma derives the path (it is valid for any ζ0, not
necessarily greater than ζ).39

LEMMA 1—Closed-Form Solution for the Transition in the Steindl Model:
The time path of p(x� t) is the solution to (5) with σ = 0 and initial condition
p0(x)= ζ0e

−ζ0x, ζ0 = δ0/μ0 and is given by

(23) p(x� t)= ζe−ζx1{x≤μt} + ζ0e
−ζ0x+(ζ0−ζ)μt1{x>μt}�

where 1{·} is the indicator function.

The solution is depicted in Figure 2(a).40 Consider, in particular, the local
power law exponent ζ(x� t)= −∂ logp(x� t)/∂x. Since the figure plots the log

39Section K of the Supplemental Material gives more closed forms, for example, with σ > 0.
40The Steindl model is too stylized for a systematic calibration, an exercise we pursue in Sec-

tion 4.3. Figure 2 uses comparable parameter values: we set δ = 1/30, ζ0 = 1/0�39, ζ = 1/0�66
and choose μ0 = δ/ζ0 = 0�013 and μ= δ/ζ = 0�022. In panel (b), we set σ = 0�1 and recalibrate
μ0 and μ to deliver the same ζ and ζ0.



2090 GABAIX, LASRY, LIONS, AND MOLL

density, logp(x� t), against log income x, this local power law exponent is sim-
ply the slope of the line in the figure. The time path of the distribution fea-
tures a “traveling discontinuity.” Importantly, the local power law exponent
(the slope of the line) first changes only for low values of x. In contrast, for
high values of x, the distribution shifts out in parallel and the slope of the line
does not move at all. More precisely, for a given point x, the exponent does
not move at all when t < τ(x)= x/μ, then fully jumps to its steady-state value
at t = τ(x). In the Steindl model, the convergence of the distribution is slower
the further out in the tail we look. In particular, note from the figure that the
asymptotic (for large x) power law exponent ζ(t) = − limx→∞ ∂ logp(x� t)/∂x
takes an infinite time to converge to its stationary distribution. In the special
case of the Steindl model, this slow convergence in the tail is particularly stark
in that some parts of the distribution do not move at all. Figure 2(b) shows that
also in the more general case with σ > 0, the power law exponent ζ (equiva-
lently, top inequality η) does not change at first and the distribution instead
shifts out in parallel.41

Consider the behavior of top income shares in response to the permanent
increase in μ considered above. Lemma 1 implies that the relative income of
the 0.1% versus 1% income quantiles is constant for a while; it budges only
when the “traveling discontinuity” hits the top 1% quantile. In contrast, the
levels of the top 1% income quantile and the 0.1% income quantile increase
quickly after the shock (to be more precise, after any time t > 0, they have
moved, in parallel). Hence, the ratio of the 0.1% to 1% share moves slowly
(indeed, not at all for a while), though the top 1% share moves fairly fast.

FIGURE 2.—Transition of cross-sectional income distribution.

41This is more than a numerical result. Defining the local power law exponent ζ(x� t) :=
−Px(x� t)/P(x� t) where P is the CDF corresponding to p, one can show using (5) that this local
power law exponent does not move on impact following a shock, ζt(x� t)|t=0 = 0 for all x > 0.
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4.3. The Baseline Model Cannot Explain the Fast Rise in Income Inequality

We now revisit Figure 1 from Section 2 and ask: can standard random growth
models generate the observed increase in income inequality? We find that they
cannot. In particular, the transition dynamics generated by the model are too
slow relative to the dynamics observed in the data. This operationalizes, by
means of a simple calibration exercise using estimates from the micro data, the
theoretical results in the preceding two sections.

More precisely, we ask whether an increase in the variance of the perma-
nent component of wages σ2 can explain the increase in income inequality
observed in the data. That an increase in the variance of permanent earnings
has contributed to the rise of inequality observed in the data has been argued
by Moffitt and Gottschalk (1995), Haider (2001), Kopczuk, Saez, and Song
(2010), and DeBacker, Heim, Panousi, Ramnath, and Vidangos (2013) (how-
ever, Guvenen, Ozkan, and Song (2014) examined administrative data and dis-
puted that there has been such a trend—either way, our argument is that an
increase in σ cannot explain the rise in top inequality). The particular experi-
ment we consider below is an increase in the variance of permanent earnings
σ2 from 0�01 in 1973 to 0�025 today. This implies that the standard deviation
σ increases from 0�1 to 0�158, broadly consistent with evidence in Heathcote,
Perri, and Violante (2010).

Before proceeding to the calibration exercise, we first use our theoretical
results for some simple back-of-the-envelope calculations that illustrate our
main point that transition dynamics of standard random growth models are ex-
tremely slow. We here focus on the case μ≥ 0, that is, that individuals’ incomes
grow at least as fast, on average, as the aggregate economy.42 Proposition 1
then implies that the average speed of convergence is simply λ = δ and the
corresponding half-life is t1/2 = log(2)/δ.43 As shown in Propositions 3 and 4,
the speed of convergence in the tail can be much slower. In particular, consider
the formula (20) for the speed of convergence without jumps φ= 0:

(24) λ(ξ)= ξμ− ξ2σ
2

2
+ δ�

42Our model is stationary, whereas the U.S. economy features long-run growth. The parameter
μ should therefore be interpreted as the growth rate of individual incomes over the life cycle
relative to the growth rate of the aggregate economy (this can also be seen from the fact that in
the model, the distribution of starting wagesψ(x) is stationary). Parameterizations with μ< 0 are
therefore relatively natural as well. In that case and with a reflecting barrier, convergence may be
marginally faster—see (12).

43Because we are dealing with exponential decay in multiple (in fact, infinite) dimensions,
t1/2 only equals half the time it takes for ‖p− p∞‖ to converge for the particular initial condi-
tions p0 for which ‖p− p∞‖ = ‖p0 − p∞‖e−λt (so that ‖p0 − p∞‖e−λt1/2 = 1

2 ‖p0 − p∞‖ implies
t1/2 = log 2/λ). For other initial conditions, this equation only holds asymptotically—see (10). It
is nevertheless standard to refer to t1/2 as “half-life.”
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Here the reader should recall that by varying ξ, we can trace out the speed of
convergence of all moments of the distribution and λ(ξ) is the speed of con-
vergence of the −ξth moment. Equivalently, −ξ is the weight on the tail in the
weighted L1-norm (17). For our calculations, it is convenient to express (24)
in terms of tail inequality η = 1/ζ, which is directly measurable from cross-
sectional data. From (2), we have μ= δη− σ2/(2η) and therefore

(25) λ(ξ)= ξ
(
δη− σ2

2η

)
− ξ2σ

2

2
+ δ=

(
δη− σ2

2
ξ

)(
1
η

+ ξ
)
�

In the relevant range −1/η < ξ < 0, the speed of convergence is strictly de-
creasing in tail inequality η, that is, higher inequality goes hand in hand with a
slower transition. It is also strictly increasing in the innovation variance σ2.

Using this formula, we can now examine how the parameters η�δ, and σ2

affect the speed of convergence. To get a “quantitative feel” for (25), consider
first the “Steindl” case σ2 = 0 so that λ(ξ) = δ(1 + ηξ). While unrealistic,
this simple case has the advantages that computations are particularly easy
and only require estimates for two parameters, η and δ (the implied speed
also turns out to be similar for the more realistic case where σ2 > 0). We use
δ = 1/30 corresponding to an expected work life of thirty years. A slight dif-
ficulty arises because η in (25) is tail inequality in the new stationary equi-
librium. We use observed tail inequality in 2012, which equals η2012 = 0�66,
a conservative estimate because λ(ξ) is decreasing in η (and η is increas-
ing in the data).44 The resulting half-life of the −ξth moment is given by
t1/2(ξ) = log 2/λ(ξ) = 0�69 × 30 × 1

1+0�66ξ . For example, the half-life of con-
vergence of the first moment (ξ= −1) is around 60 years. Note that this cal-
ibration is conservative. In particular, a longer expected work life or higher
estimate of tail inequality would result in even slower transitions.

We use (25) to perform similar calculations for the more general case where
σ2 > 0. Figure 3 plots the corresponding half-life t1/2(ξ)= log(2)/λ(ξ) for the
parameter values used in our experiment as a function of the moment under
consideration −ξ. Consider first the solid line which plots the half-life t1/2(ξ)
for σ2 = 0�025, the variance of the permanent component of wages used in
our experiment. There are two main takeaways from the figure. First, even for
relatively low moments, the speed of convergence is considerably lower. For
example, the half-life of convergence of the first moment (ξ= −1) is around 40
years, that is, twice as much as the average speed of roughly 20 years. Second,
the speed of convergence becomes slower and slower the higher the moment
under consideration, with half-lives of 100 years close to the highest admissible
moment 1/η = 1�52. The figure also shows that the speed of convergence is
not particularly sensitive to the value of the variance σ2.

44We compute η from the relative income shares in panel (b) of Figure 1. If the distribution
is Pareto, relative income shares satisfy S(p/10)

S(p)
= 10η−1 and we therefore compute η(p) = 1 +

log10 S(p/10)/S(p). We here use η(1)= 1 + log10 S(0�1)/S(1).



THE DYNAMICS OF INEQUALITY 2093

FIGURE 3.—Theoretical speed of convergence of different moments of income distribution.

We next consider the effects of an increase in σ2 from 0�01 in 1973 to
0�025 today in the baseline random growth model and how they compare to
the evolution of inequality in the data. We set δ = 1/30 as above and set
μ to match the observed tail inequality in 1973, η1973 = 0�39, which yields
μ = δη − σ2/(2η) = 0�002, that is, individual income growth 0.2% above
the economy’s long-run growth rate. Figure 4 plots the time paths for the
top 1% income share (panel (a)) and the empirical power law exponent
(panel (b)) following the increase in σ2 in the baseline random growth model
and compares them to the same data series that we have already plotted in
Figure 1.45 Not surprisingly given our analytical results, the model fails spec-

FIGURE 4.—Dynamics of income inequality in the baseline model.

45We solve the Kolmogorov Forward equation (5) numerically using a finite difference method.
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tacularly.46 As we have mentioned in Section 2, there is some uncertainty about
the precise quantitative increase in top inequality and in the corresponding em-
pirical power law exponent. To explore this, in Appendix B, we repeat the ex-
periment in Figure 4 but using only wage (salary) data rather than total income
(excluding capital gains). With the alternative data series, the gap between the
data and the model is more modest. But it remains true that the baseline ran-
dom growth model cannot explain the observed rise in top inequality.

Summarizing, an increase in the variance in the permanent component of
income σ2 in the standard random growth model is not a promising candidate
for explaining the observed increase in top income inequality. It is also worth
emphasizing again that allowing for jumps (φ> 0) in the income process would
only slow down the speed of convergence even more (Proposition 3).

5. MODELS THAT GENERATE FAST TRANSITIONS

Given the negative results of the preceding section, it is natural to ask: what
then explains the observed fast rise in top income inequality? We argue that
fast transitions require very specific departures from the standard random
growth model. We extend the model along two dimensions, both of which con-
stitute deviations from Gibrat’s law. First, we allow for type dependence in the
growth rate distribution. Second, we consider scale dependence. We discuss the
role of these two additions in turn in Sections 5.2 and 5.3. In Section 5.4, we
then revisit the rise in income inequality and argue that our augmented ran-
dom growth model can generate transitions that are as fast as those observed
in the data.

5.1. The Augmented Random Growth Model

In its most general form, we consider a random growth model with type de-
pendence in the form of distinct “growth types” indexed by j = 1� � � � � J, and
scale dependence captured by a process χt . The dynamics of log income xit of
individual i of type j are given by

xit = χbjt yit�(26)

dyit = μj dt + σj dZit + gjit dNjit + Injection − Death�

where dNjit is a Poisson process with intensity φj and gjit is a random variable
with distribution fj . The latent variable yit can be interpreted as a worker’s
skill. As before, workers retire at rate δ and get replaced by labor entrants with
income drawn from a distribution ψ. A fraction θj of labor force entrants are

46Note that the power law exponent in panel (b) is completely flat on impact, consistent with
Figure 2 and footnote 41.
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born as type j and workers switch from being type j to type k at rate αj�k. Our
baseline model is the special case with J = 1 and χt = 1.

The process features type dependence in that μj , σj , φj , and fj differ across
types. Guvenen (2007) has argued that an income process with heterogeneous
income profiles provides a better fit to the micro data than a model in which
all individuals face the same income profile, and he found large heterogeneity
in the slope of income profiles. The model above also allows for heterogene-
ity in the standard deviation of income innovations σj , similar to the mixture
specification advocated by Guvenen et al. (2015). We also build on Luttmer
(2011), who studied a related framework applied to firm dynamics and argued
that persistent heterogeneity in mean firm growth rates is needed to account
for the relatively young age of very large firms at a given point in time (a state-
ment about the stationary distribution rather than transition dynamics as in
our paper). Aoki and Nirei (2015) presented a related and more complex eco-
nomic model with entrepreneurs and workers that are subject to different in-
come growth rates, and Jones and Kim (2014) examined a model with different
types of entrepreneurs.

Scale dependence is captured by χt , an arbitrary stochastic process satisfying
χt > 0 and limt→∞ E[logχt]<∞. Basically, with bj > 0, an increase in χt means
that the income growth rate is higher for higher incomes: hence it violates
Gibrat’s law. To see this, write (26) as

(27) dxit = μ̃jt dt+ σ̃jt dZit +bjxit d logχt +gjit dÑjit + Injection−Death�

where μ̃jt = μjχ
bj
t , σ̃jt = σjχ

bj
t , and dÑjit = dNjitχ

bj
t . If bj d logχt > 0, the

growth rate of income xit is increasing in income, that is, a deviation from
Gibrat’s law.47 Appendix I.1 provides conditions under which the process (26)
features a unique stationary distribution with a Pareto tail, and we assume that
these conditions hold throughout this section.48

5.2. The Role of Type Dependence

First, consider the special case of (26) with type dependence but without
scale dependence χt = 1 (or jumps φ = 0). Here we focus on a simple case
with two types, a high-growth type and a low-growth type, but our results can
be extended to more types (Appendix I.2).

47Also note thatZit is an idiosyncratic stochastic process whereas St is an aggregate or common
shock that hits all individuals simultaneously.

48More precisely, we provide conditions under which the process for skill yit has a fat-tailed
stationary distribution. A necessary and sufficient condition for income xit to also have a fat-
tailed stationary distribution is that χt is constant. More generally, though, we want to allow for
time-variation in χt , thereby capturing secular changes in skill prices or shocks disproportionately
affecting high incomes at business-cycle frequencies.



2096 GABAIX, LASRY, LIONS, AND MOLL

Denote the density of individuals who are currently in the high- and low-
growth states by pH(x� t) and pL(x� t) and the cross-sectional wage distribu-
tion by p(x� t) = pH(x� t)+ pL(x� t). We assume that a fraction θ of individ-
uals start their career as high-growth types and the remainder as low-growth
types, and that individuals switch from high to low growth with intensity α. Low
growth is an absorbing state that is only left upon retirement. Newborn indi-
viduals start with income x= 0. Then, the densities satisfy the following system
of Kolmogorov Forward equations:

pH
t = −μHp

H
x + σ2

H

2
pH
xx − αpH − δpH +βHδ0�(28)

pL
t = −μLp

L
x + σ2

L

2
pL
xx + αpH − δpL +βLδ0�

with initial conditions pH(x�0) = pH
0 (x), p

L(x�0) = pL
0 (x), where δ0 is the

Dirac delta function at x = 0 capturing rebirth, and where βH = θδ and
βL = (1 − θ)δ are the birth rates of the two types.

While we are not aware of an analytic solution method for the system of
partial differential equations (28), this system can be conveniently analyzed
by means of Laplace transforms as in Section 4.2. In particular, p̂H(ξ� t) and
p̂L(ξ� t) satisfy

p̂H
t (ξ� t)= −λH(ξ)p̂

H(ξ� t)+βH�(29)

λH(ξ) := ξμH − ξ2σ
2
H

2
+ α+ δ�

p̂L
t (ξ� t)= −λL(ξ)p̂

L(ξ� t)+ αp̂H(ξ� t)+βL�(30)

λL(ξ) := ξμL − ξ2σ
2
L

2
+ δ�

with initial conditions p̂H(ξ�0) = p̂H
0 (ξ), p̂

L(ξ�0) = p̂L
0 (ξ). Importantly, for

fixed ξ, this is again simply a system of ordinary (rather than partial) differen-
tial equations which can be solved analytically. Note that the system is trian-
gular so that one can first solve the equation for p̂H(ξ� t) and then the one for
p̂L(ξ� t).49

PROPOSITION 5—Speed of Convergence With Type Dependence: Consider
the cross-sectional distribution p(x� t) := pH(x� t)+pL(x� t). The stationary dis-

49Proposition 5 can easily be extended to a non-triangular system, that is, if the low state is
not an absorbing state and low types can switch to being high types. See Appendix I.2. This is
achieved by writing the analogue of (29) and (30) in matrix form. The speed of convergence is
then governed by the eigenvalues of that matrix. In the triangular case, these eigenvalues are
simply −λL(ξ) and −λH(ξ). Therefore, while triangularity yields simple formulae, all results can
be extended to the more general case.
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tribution p∞(x) = pH
∞(x) + pL

∞(x) has a Pareto tail with tail exponent ζ =
min{ζL� ζH}, where ζH is the positive root of 0 = ζ2 σ

2
H
2 + ζμH −α−δ and ζL is the

positive root of 0 = ζ2 σ
2
L

2 + ζμL − δ. The time paths of the Laplace transforms of
pH(x� t) and p(x� t) are

p̂H(ξ� t)− p̂H
∞(ξ)= e−λH(ξ)t

(
p̂H

0 (ξ)− p̂H
∞(ξ)

)
�(31)

p̂(ξ� t)− p̂∞(ξ)= cH(ξ)e
−λH(ξ)t + cL(ξ)e

−λL(ξ)t�(32)

where λH(ξ) and λL(ξ) are defined in (29) and (30), p̂H
∞(ξ) and p̂∞(ξ) are the

Laplace transforms of the stationary distributions, and cH(ξ) and cL(ξ) are con-
stants of integration. Finally, the weighted L1-norm of the distribution of high types
converges at rate − limt→∞ 1

t
log‖pH(x� t)−pH

∞(x)‖ξ = λH(ξ).

The transition dynamics of the income distribution therefore take place on
two different time scales: part of the transition happens at rate λH(ξ) and an-
other part at rate λL(ξ).50 The model then has the theoretical potential to ex-
plain fast short-run dynamics and, as we argue in Section 5.4, the observed rise
in income inequality.

5.3. The Role of Scale Dependence

Next, consider the special case of (26) with scale dependence d logχt �= 0
but without type dependence J = 1 (only one growth type). The logarithm of
income then satisfies xit = χtyit and the level of income is wit = (eyit )χt , with χt
disciplining the convexity of income as a function of skill eyit .

Intuitively, changes in χt may arise from a “convexification” in skill prices,
as in models with “superstar” effects or, more generally, in task-based assign-
ment models.51 To illustrate this point, Appendix I.3 presents a completely mi-
crofounded model (which is a dynamic extension of the static model of Gabaix
and Landier (2008)). There, CEOs of differing talent are matched with firms
of differing size. The variable yit denotes the log quantile of talent of the CEO
(so that highly talented individuals have a high yit ; indeed, in this model, only
a fraction e−yit of individuals are more talented than individual i). The value

50A natural assumption is that the switching rate α is large enough to swamp any differences
between the μ’s and σ ’s in the two states and so λH(ξ) > λL(ξ) in (29) and (30). In contrast
to the baseline random growth model of Section 4, transition dynamics following a parameter
change now take place on two different time scales: part of the transition happens quickly at rate
λH(ξ), but the other part of the transition happens at a much slower pace λL(ξ). In the short run,
the dynamics governed by λH(ξ) dominate, whereas in the long run, the slower dynamics due to
λL(ξ) determine the dynamics of the income distribution.

51For models with superstar effects, see Rosen (1981), Garicano and Rossi-Hansberg (2006),
Gabaix and Landier (2008), Tervio (2008), and Geerolf (2016). For an overview of task-based
assignment models, see Acemoglu and Autor (2011, Section 4).
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added of a CEO with talent yit managing a firm of size Sit is proportional to
Sγtit T (yit), where γt captures the “scope of CEO talent” and T is an increasing
function. In equilibrium, more talented CEOs are matched with larger firms.
After some algebra, one can then show that the log income of a CEO is indeed
xit = χtyit , where χt := αγt − β and where α and β are other model parame-
ters.

Hence, when the “scope of CEO talent” γt increases (perhaps because of
an increase of the ability of the CEO to manage other people, as in Garicano
and Rossi-Hansberg (2006)), the talent multiplier χt increases. In addition,
an individual CEO’s skill varies, which leads to dynamics of yit . This is just
an example of a full-fledged microfoundation for scale dependence. We are
hopeful that other models will be developed that generate scale dependence,
calibrated on dynamic micro data. Here we simply illustrated that generating
scale dependence is possible by writing a dynamic version of already existing
static models (like Gabaix and Landier (2008)).

Next, we note that this is a potentially powerful effect, as the next proposition
records. Since income is wit = (eyit )χt , it is easy to see that an increase in χt
(which generates scale dependence) leads to an instantaneous fattening of the
tail of the income distribution.

PROPOSITION 6—Infinitely Fast Adjustment in Models With Scale Depen-
dence: Consider the special case of (26) xit = χtyit , where the distribution of yit
is stationary and where χt is an aggregate shock. This process has an infinitely fast
speed of adjustment: λ = ∞. Denoting by ζxt and ζy the power law exponents of
log income and skill xit and yit , we have ζxt = ζy/χt .

PROOF: The mechanism is so basic that the proof is very simple: if P(yit >
y)= ce−ζyy ,

P(xit > x)= P(χtyit > x)= P(yit > x/χt)= ce−ζyx/χt

⇒ ζxt = ζy/χt� Q.E.D.

Hence, the process is extremely fast—it features instantaneous transitions
in the power law exponent. Therefore, if χt has a secular trend, the power
law exponent inherits this trend. Fast transitions are therefore consistent with
theories in which the increase in top income inequality is driven by changing
skill prices, for example, due to the rise of “superstars.”

Parker and Vissing-Jorgensen (2010) provided supportive evidence for scale
dependence at high frequencies. They found that in good (respectively bad)
times, the incomes of top earners increase (respectively decrease), in a manner
consistent with (27): the sensitivity to the shock at time t is proportional to xit ,
as in

dxit = xit dSt +μdt + σ dZit�



THE DYNAMICS OF INEQUALITY 2099

with St := d logχt . Note that the shock xit dSt to log income is multiplicative in
log income, as opposed to additive as in the traditional random growth model.
This finding is broadly confirmed by Guvenen (2015, p. 40). Finally, Acemoglu
and Autor (2011) cited some evidence for an increasing “convexification” in
returns to schooling over time, again broadly consistent with scale dependence
arising due to changing skill prices. We conclude that scale dependence is an
empirically grounded source of fast transitions.

5.4. Fast Transitions in the Augmented Model

We now use the framework of this section to revisit the rise in income in-
equality in the United States. We argue that, in contrast to the spectacular fail-
ure of the standard random growth model, the model with type dependence
presented in the preceding sections has the potential to explain the observed
rise in top income inequality.

We conduct an analogous exercise to that in Section 4.3. The shock we con-
sider in the present exercise is an increase in the mean growth rate of high
types μH (while μL is unchanged). This is motivated in part by casual evidence
of very rapid income growth rates since the 1980s, for instance for Bill Gates,
Mark Zuckerberg, hedge fund managers, and the like—their growth is very
high for a while, then tails off. This impression was confirmed by Jones and
Kim (2014), who found that there has been a substantial increase in the av-
erage growth rate in the upper tail of the growth rate distribution since the
late 1970s.52 We follow a similar calibration strategy as in Section 4.3. First,
note from Proposition 3 that, if μH is sufficiently bigger than μL, the Pareto
tail of the stationary income distribution is determined only by the dynamics of
high-growth types and given by

(33) ζ = min{ζL� ζH} = −μH +
√
μ2

H + 2σ2
H(δ+ α)

σ2
H

�

and the parameters σL and μL do not affect top inequality. As before, we set
δ= 1/30 and impose that the economy is initially in a Pareto steady state with

52Jones and Kim (2014) proxied μH with the median of the upper decile, that is, the 95th per-
centile, of the distribution of income growth rates. Combining evidence from the IRS public use
panel of tax returns and from Guvenen, Ozkan, and Song (2014), they showed that this measure
of μH has increased substantially from 1979–1981 to 1988–1990 to 1995–1996. Jones and Kim
noted that this evidence should be viewed as suggestive due to limited sample sizes in the IRS
data and comparability of the IRS and the Social Security Administration data used by Guvenen,
Ozkan, and Song (2014). Below, we discuss ongoing work and directions for future work that
could improve on these estimates. In the meantime, Jones and Kim provided the best available
evidence documenting potential drivers of the increase in top income inequality.
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FIGURE 5.—Transition dynamics in model with type dependence.

η1973 = 0�39. We set σH = 0�15, which is a conservative estimate.53 We do not
have precise estimates for α, the rate of switching from high to low growth. For
our baseline results, we set α= 1/6, corresponding to an expected duration of
being a high-growth type of 6 years, and we report results under alternative
parameter values. Given values for σH� δ, and α, we calibrate the initial μH so
that (33) yields η1973 = 0�39. In the initial steady state, the difference in mean
growth rates between high- and low-growth types is μH −μL = 0�05.

Our baseline exercise considers a once-and-for-all increase in μH by 8 per-
centage points. The resulting gap of μH −μL = 0�13 is broadly consistent with
empirical evidence in Guvenen, Kaplan, and Song (2014).54 Figure 5 plots the
corresponding results. The difference to the earlier experiment in Figure 4 is
striking. The model with type dependence can replicate the rapid rise in in-
come inequality observed in the United States.

The key parameters that govern the speed of transition are μH and α, the
growth rate of high types and the probability of leaving it. In the Supplemen-
tal Material, we report results from alternative parameterizations and experi-
ments. As expected given our theoretical results, transitions are fastest when
α and μH are high, that is, when individuals can experience very short-lived,
very high-growth spurts, what one may call “live-fast-die-young dynamics.”55 In

53Larger values of σH lead to even faster transition dynamics. We set σL = 0�1 based on the
evidence discussed in Section 4.3. We view σH = 0�15 as conservative because the growth rates of
parts of the population may be much more volatile (think of startups).

54Guvenen, Kaplan, and Song (2014) documented differences in average growth rates of dif-
ferent population groups as large as 0�23 log points per year. See in particular their Figure 7.
Readers may also wonder how the model with type dependence compares to the baseline model
when subjected to the same shock, that is, an increase in σH. Appendix I.4 reports results from
such an experiment. As expected, transitions are faster.

55In their ongoing work using a very similar model, Jones and Kim (2014) proposed such a
“live-fast-die-young” calibration with very high α and μH.
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summary, the model with type dependence is capable of generating fast transi-
tion dynamics of top inequality for a number of alternative parameterizations
that are broadly consistent with the micro data. The common feature of these
parameterizations is a combination of relatively high growth rates for part
of the population (high enough μH) over relatively short time horizons (high
enough α). The absence of better micro estimates for these critical parameters
and the stylized nature of our model mean that the quantitative explorations
in this section should be viewed as suggestive. Future research should explore
these mechanisms in richer, more fully-fledged quantitative models. Similarly,
better empirical evidence is a clear priority.

6. CONCLUSION

This paper makes two contributions. First, it finds that standard random
growth models cannot explain rapid changes in tail inequality, for robust an-
alytical reasons. This required developing new tools to analyze transition dy-
namics, as most previous literature could analyze only separate steady states,
without being able to assess analytically the speed of transition between them
and without identifying the above-mentioned important defect of the standard
model. Second, it suggests two parsimonious deviations from the basic model
that can explain such fast changes: (i) type dependence and (ii) scale depen-
dence. We view them as promising, because they have some support in the
data (as we argued above; see especially Parker and Vissing-Jorgensen (2010),
Jones and Kim (2014), and Guvenen (2015)). We hope that future research
explores their importance in more detail.

We illustrated our findings in the context of the dynamics of income inequal-
ity. However, our criticism and suggested fixes apply without change to random
growth models of the wealth distribution. In Appendix E, we work out in detail
the implications of our theoretical results for the dynamics of wealth inequal-
ity. As we discuss there, recent empirical work finds some support for both type
and scale dependence in wealth dynamics (Bach, Calvet, and Sodini (2015),
Fagereng, Guiso, Malacrino, and Pistaferri (2016)). A clear priority for future
research is empirical evidence, in combination with quantitative theory, that
allows for an assessment of various concrete economic mechanisms put forth
in the public debate. (“Is the rise in top inequality due to: technical change,
superstars, rent-seeking, globalization, and so on?”) The forces we have ana-
lyzed in this paper may serve to guide future empirical and theoretical work on
the determinants of fast changes in inequality.

APPENDIX A: PROOF OF PROPOSITION 1

Proposition 1 is concerned with two different cases. The first case involves
models with death and rebirth where the dynamics without those terms are not
ergodic. The second one concerns ergodic models (with or without death and
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rebirth). The strategy of the proof in both cases is different and we therefore
present the two cases separately. In the first case (“non-ergodic case”), the rate
of convergence is obtained by directly analyzing the dynamics of the L1 norm
(4) of the cross-sectional distribution. In the second case (“ergodic case”), the
convergence is to a real invariant measure and the rate of convergence is ob-
tained by a spectral analysis (in particular, it is given by the “spectral gap”).56

A.1. Proof of Proposition 1: Non-ergodic Case

We here study the non-ergodic case, starting with a generally useful lemma.

LEMMA 2: Suppose that a function q(x� t) solves qt = Aq with Aq =
a(x� t)q + b(x� t)qx + c(x� t)qxx with c(x� t) ≥ 0 for all x. Then |q(x� t)| is a
“subsolution” of the same equation, that is,

(34) |q|t ≤A|q|�

PROOF: The key is that |q| is a convex function of q. Assume ϕ is aC2 convex
function and set z = ϕ(q). Then zt = ϕ′(q)qt , zx = ϕ′(q)qx, zxx = ϕ′′(q)q2

x +
ϕ′(q)qxx, so

zt −Az = ϕ′(q) [qt − bqx − cqxx]︸ ︷︷ ︸
=aq

−az− c ϕ′′(q)︸ ︷︷ ︸
≥0

q2
x︸︷︷︸

≥0

≤ a(ϕ′(q)q−ϕ(q))�
Take ϕ(q) = ϕ(ε)(q) = √

ε2 + q2 for some ε > 0 and z(ε) = ϕ(ε)(q). Then
ϕ′(q)q − ϕ(q) = q2√

ε2+q2
− √

ε2 + q2 = −ε2√
ε2+q2

∈ [−ε�0], so z(ε)t − Az(ε) ≤
|a(x� t)|ε. As ε → 0, z(ε) → |q|, so this inequality becomes: |q|t −
A|q| ≤ 0. Q.E.D.

We next apply Lemma 2 to q(x� t) := p(x� t)− p∞(x) to prove a useful in-
equality. We note that since pt = A∗p + δψ and 0 = A∗p∞ + δψ, we have
qt =A∗q= −μqx + σ2

2 qxx − δq.

LEMMA 3: The decay rate of the L1 norm d(t) := ‖q(·� t)‖ is at least δ: λ≥ δ.

56More precisely, in the “ergodic case,” there is a reflecting barrier and δ≥ 0, μ< 0�σ2 > 0. In
the “non-ergodic case,” there is no reflecting barrier and no restriction on μ but δ > 0, σ2 ≥ 0. In
the proposition, we distinguish between the case “with a reflecting barrier” and the one “without
a reflecting barrier.” Note that this distinction is related to but somewhat different from “ergodic”
and “non-ergodic.”
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PROOF: We have d(t) := ‖q(·� t)‖ = ∫ |q(x� t)|dx and hence

d′(t)=
∫ ∣∣q(x� t)∣∣

t
dx≤

∫ (
−δ|q| −μ|q|x + σ2

2
|q|xx

)
dx

= −δ
∫

|q|dx�

where the inequality follows from Lemma 2 and the last equality from the
boundary conditions corresponding to p. Hence d′(t)≤ −δ ∫ |q|dx= −δd(t)
and therefore d(t)≤ e−δtd(0) by Grönwall’s lemma. Q.E.D.

We next prove the opposite inequality (the overly technical proof is in Ap-
pendix F.2.2):

LEMMA 4: The decay rate of the L1 norm d(t) := ‖q(·� t)‖ is at most δ: λ≤ δ.

Gathering the arguments and putting together Lemmas 3 and 4, we obtain
that λ= δ.

A.2. Proof of Proposition 1: Ergodic Case

We next study the “ergodic case”: there is a reflecting barrier on income and
additionally μ < 0. Then the process (1) is ergodic even with δ = 0. In this
case, the cross-sectional distribution satisfies (9) with boundary condition (6).
The key insight is that the speed of convergence of p is governed by the second
eigenvalue of the operator A∗ (A∗p := −μpx+ σ2

2 pxx−δp), and the key step is
to obtain an analytic formula for this second eigenvalue given by |λ2| = 1

2
μ2

σ2 +δ.

A.2.1. Preparation: Key Concepts and Boundary Conditions

We first review some mathematical concepts that will be useful.57 First, the
inner product of two continuous functions u and v is 〈u�v〉 = ∫ ∞

−∞ u(x)v(x)dx.
Second, for an operator A, the (formal) adjoint of A is the operator A∗ sat-
isfying 〈Au�p〉 = 〈u�A∗p〉. Third, an operator B is self-adjoint if B∗ = B.58 It
is well known that eigenvalues of a self-adjoint operator are real. Fourth, the
infinitesimal generator of a Brownian motion with death at Poisson rate δ is the
operator A defined by

(35) Au= μux + σ2

2
uxx − δu�

57A more systematic treatment can be found in many textbooks on functional analysis or partial
differential equations, particularly applications to physics. See, for example, Weidmann (1980)
and the more accessible Hunter and Nachtergaele (2001) and Stone and Goldbart (2009, Chap-
ter 4).

58Note that the adjoint is the infinite-dimensional analogue of a matrix transpose.
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Some care is needed with the boundary condition. As we shall see, the bound-
ary condition is

(36) ux(0)= 0�

The domain of A here is the set of functions u in L2 (i.e., square-integrable
functions) such that Au is also in L2, that is, the u’s such that u�ux�uxx are
in L2.

We next state a lemma. Its proof is instructive, because it shows where the
boundary condition (36) comes from.

LEMMA 5: The Kolmogorov Forward operator A∗ in (9) with boundary condi-
tion (6) in the reflecting case is the adjoint of the infinitesimal generator A in (35)
with boundary condition (36).

PROOF: The boundary for p(x) is μp(0) − σ2

2 px(0) = 0 (this comes from
integrating the Forward Kolmogorov equation from x= 0 to ∞). We have

〈
u�A∗p

〉 = ∫ ∞

0
u

(
−μpx + σ2

2
pxx − δp

)
dx

=
[
−uμp+ σ2

2
upx

]∞

0

−
∫ ∞

0

(
−μuxp+ σ2

2
uxpx

)
dx

−
∫ ∞

0
δupdx

=
[
−uμp+ σ2

2
upx − σ2

2
uxp

]∞

0

+
∫ ∞

0

(
μuxp+ σ2

2
uxxp− δup

)
dx

= u(0)
(
μp(0)− σ2

2
px(0)

)
+ σ2

2
ux(0)p(0)+ 〈Au�p〉

= σ2

2
ux(0)p(0)+ 〈Au�p〉 from (6)

= 〈Au�p〉�
For the last equality, we need σ2

2 ux(0)p(0) = 0, which leads to the boundary
condition (36). Q.E.D.

A.2.2. Main Proof

With these preliminaries in hand, we proceed with the proof of the proposi-
tion.
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We first show how the case δ ≥ 0 can be derived from the case δ = 0. Sup-
pose an initial condition p0(x). Given that pt = A∗p + δψ (equation (9)),
we have 0 = A∗p∞ + δψ, and by subtraction q̃ := p − p∞ satisfies q̃t =
A∗q̃. Next, define q(x� t) := eδt q̃(x� t) = eδt(p(x� t) − p∞(x)). Then, a sim-
ple calculation gives: qt = C∗q := −μqx + σ2

2 qxx. Operator C∗ has no “death,”
and has the same boundary condition as B∗, so that the case δ = 0 ap-
plies to q. If we have shown (as we will shortly) that ‖q(x� t)‖ decays in
e−λt (more precisely, that λ = − limt→∞ 1

t
log‖q(x� t)‖), that will show that

‖p(x� t) − p∞(x)‖ = e−δt‖q(x� t)‖ decays in e−δt−λt (more precisely, that δ +
λ = − limt→∞ 1

t
log‖p(x� t) − p∞(x)‖). Hence, the case δ > 0 follows easily

from the case δ= 0.
We next proceed to the case δ = 0. The goal is to analyze the eigenvalues

of the infinitesimal generator A or, equivalently, its adjoint A∗. The difficulty
is that A is not self-adjoint, A∗ �= A, and therefore its eigenvalues could, in
principle, be anywhere in the complex plane. We therefore construct a self-
adjoint transformation B of A as follows.

LEMMA 6: Consider u satisfying ut = Au with δ= 0 and boundary condition
(36) and the corresponding stationary distribution p̄∞(x) = − 2μ

σ2 e
(2μ/σ2)x. Then

v := up̄1/2
∞ =

√
− 2μ
σ2ue

(μ/σ2)x satisfies

(37) vt = Bv := σ2

2
vxx − 1

2
μ2

σ2 v�

with boundary condition vx(0)= μ

σ2 v(0) and where the domain of B is the set of
functions v in L2 such that Bv is also in L2.59 Furthermore, B is self-adjoint.

PROOF: Equation (37) follows from differentiating
√

− 2μ
σ2ue

(μ/σ2)x. To see
that B is self-adjoint, we integrate by parts as in Lemma 5 to conclude that for
any v�q in the domain of B, 〈Bv�q〉 = 〈v�Bq〉. Q.E.D.

LEMMA 7: The spectrum of B consists of an isolated first eigenvalue Λ1 = 0,
Λ2 = − 1

2
μ2

σ2 , and all other points in the spectrum satisfy |Λ| > |Λ2|. Hence the

spectral gap of B equals λ := |Λ2| = 1
2
μ2

σ2 .

PROOF: Since B with boundary condition vx(0)= μ

σ2 v(0) is non-positive def-
inite, anyΛ in the spectrum of B must be non-positive. Consider the eigenvalue

59Note that B is unbounded. To show f� f ′′ ∈ L2 implies f ′ ∈ L2, apply Gagliardo–Nirenberg
embedding. Then to show f decays at infinity, use Morrey’s inequality to conclude f ∈ C0� 1

2 , the
space of 1

2 -Hölder continuous functions. Then argue by contradiction to conclude that f decays
at infinity. For Gagliardo–Nirenberg and Morrey’s inequality, see Evans (1998).
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problem Bϕ=Λϕ or, equivalently,

(38)
σ2

2
ϕ′′(x)− 1

2
μ2

σ2ϕ(x)=Λϕ(x)�

with boundary condition

ϕ′(0)= μ

σ2ϕ(0)�(39)

The question is: for what values of Λ ≤ 0 does (38) have a solution ϕ(x) that
satisfies the boundary condition (39) and is either in the domain of B (i.e.,
v� vx� vxx are in L2) or has at most polynomial growth. If so, ϕ is an eigen-
function of B and Λ is in the spectrum of B (essentially meaning that Λ is an
eigenvalue of B).60

To answer this question, note that for a given Λ ≤ 0, the general solution
to (38) is ϕ(x)= c1e

ax + c2e
−ax where a satisfies

(40)
σ2

2
a2 = 1

2
μ2

σ2 +Λ�

Consider four different cases:
1. Λ = 0. In this case, the solution to (40) is a = μ

σ2 , that is, ϕ(x) = e
μ

σ2 x

which satisfies (39) and stays bounded as x→ ∞ (since μ < 0). Hence Λ= 0
is an eigenvalue of B and is therefore in the spectrum of B.

2. − 1
2
μ2

σ2 <Λ< 0. In this case, a solving (40) is real and positive. We there-
fore need c1 = 0 so that ϕ does not explode exponentially as x→ ∞. But then
the boundary condition (39) implies −a= μ

σ2 , which is a contradiction. Hence
points in (− 1

2
μ2

σ2 �0) are not in the spectrum of B.
3. Λ = − 1

2
μ2

σ2 . In this case, (38) becomes ϕ′′(x) = 0. A solution is ϕ(x) =
αx + b, where we can take α > 1 and b is adjusted to satisfy the boundary
condition (39). Since ϕ is polynomially bounded, Λ= − 1

2
μ2

σ2 is in the spectrum
of B.

4. Λ <− 1
2
μ2

σ2 . In this case, a solving (40) is a purely imaginary number. We
have eix = cosx+ i sinx, so ϕ(x)= c1e

ax + c2e
−ax oscillates but stays bounded

as x→ ∞. We can therefore choose c1� c2 �= 0 to satisfy the boundary condi-
tion (39). Hence any Λ<− 1

2
μ2

σ2 is also in the spectrum of B.

60There is a subtle distinction between the eigenvalues of B and the spectrum of B: Λ is only
an eigenvalue if ϕ is in the domain of B. If ϕ is not in the domain of B but has at most polynomial
growth, Λ is not an eigenvalue but still in the spectrum of B. Similarly, in this case ϕ is not an
eigenfunction but a “generalized eigenfunction.” Intuitively, ϕ is “almost in the domain of B.”
See Simon (1981) for a proof that a polynomially bounded solution ϕ implies that Λ is in the
spectrum of B.
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Summarizing, the spectrum of B consists of an isolated first eigenvalueΛ= 0
and all Λ ∈ (−∞�− 1

2
μ2

σ2 ]. Q.E.D.

APPENDIX B: ROBUSTNESS CHECK: ALTERNATIVE INCOME MEASURE

Figures 1 and 4 plotted top income shares for the United States, where in-
come was defined as total income (salaries plus business income plus capi-
tal income) excluding capital gains from the “World Top Incomes Database”
based on data from the Internal Revenue Service (IRS). A natural question
is how our results change when we consider different measures of top income
inequality. There are three reasons to be skeptical of the data series for top
inequality in Figures 1 and 4. One is the Tax Reform Act of 1986 which sharply
cut the top marginal income tax rates and may have affected tax reporting and
realization decisions (Feenberg and Poterba (1993), Piketty and Saez (2003)).
Consistent with this narrative, a significant part of the increase in the top one
percent income share is concentrated in 1987 and 1988, right after the imple-
mentation of the Tax Reform Act. Second, a large fraction of the rise in top
income shares post-2000 seems to come from capital income (excluding capi-
tal gains) of the top 0.01%; for the remaining 0.99% of the top 1%, the income
share may be mostly flat. This point was made by Guvenen, Kaplan, and Song
(2014) using a different data series from the Social Security Administration
(SSA—they argued that the same also applies to the series of the “World Top
Incomes Database”). Third, since the series in Figures 1 and 4 is based on IRS
data, the unit of analysis is a “tax unit” as opposed to either individuals (as
in the SSA data) or families (as in household surveys like the SCF), and this
distinction may matter for the magnitude of the rise in top income inequality
(Bricker et al. (2015)).61

To examine the robustness of our results to using alternative measures of
top inequality, we repeat our main experiments using only wage (salary) data
rather than total income (excluding capital gains) as in our baseline exercises
(the top wage shares are also from the “World Top Incomes Database”). Wage
income is arguably more immune to the first two concerns listed above. In
particular, it is likely less affected by changes in tax reporting and realization
(and indeed the jump in the top 1% wage share in 1987–1988 is much less pro-
nounced than that in the top 1% income share). Similarly, changes in capital
income only will not show up (and indeed the top 1% wage share is relatively
flat post-2000). The main drawback of using wage data only is the presence of
business income in the data; in particular, it is conceptually hard to draw the
line between wages and capital income.

61Fatih Guvenen and Greg Kaplan shared with us in private communication that they plan to
further detail the reasons for skepticism listed here in a forthcoming working paper “Some Words
of Warning About the ‘Increase in Top Income Inequality’.”
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FIGURE 6.—Robustness check: alternative income measure.

Figure 6 repeats the exercise from Figure 4 using wage data. For comparison,
we superimpose the results from our previous experiment (the dashed lines).
Panel (a) plots the top 1% income share as before. With the alternative data
series, it remains true that the baseline random growth model cannot explain
the observed rise in top inequality. However, the gap between the data and the
model is more modest. Panel (b) plots the empirical inverse power law expo-
nent η(1), our preferred measure of top inequality. The use of the alternative
data series affects this measure of top inequality somewhat, but less so than
the income inequality measure (in panel (b), solid “wage data” line increases
by as much as the solid “income data” line). We conclude that our first main
result, that the standard random growth model features transitions that are too
slow relative to the increase in top inequality observed in the data, is robust to
measuring income as wage income rather than total income.
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